EF-G catalyzes translocation of mRNA and tRNAs within the ribosome during protein synthesis. Detection of structural states in the reaction sequence that are not highly populated can be facilitated by studying the process one molecule at a time. Here we present single-molecule studies of translocation showing that, for ribosomes engaged in poly(Phe) synthesis, fluorescence resonance energy transfer (FRET) between the G' domain of EF-G and the N-terminal domain of ribosomal protein L11 occurs within two rapidly interconverting states, having FRET efficiencies of 0.3 and 0.6. The antibiotic fusidic acid increases the population of the 0.6 state, indicating that it traps the ribosome.EF-G complex in a preexisting conformation formed during translation. Only the 0.3 state is observed when poly(Phe) synthesis is prevented by omission of EF-Tu, or in studies on vacant ribosomes. These results suggest that the 0.6 state results from the conformational lability of unlocked ribosomes formed during translocation. An idling state, possibly pertinent to regulation of protein synthesis, is detected in some ribosomes in the poly(Phe) system.
Serine protease factor Xa plays a critical role in the coagulation cascade. Zymogen factor X is synthesized and modified in the liver. To understand the mechanisms governing the liver-specific expression of factor X, the proximal promoter of human factor X was previously characterized. Two crucial cis elements at -73 and -128 and their cognate binding proteins, HNF-4 and NF-Y, respectively, were identified. In this report, studies are extended to 3 additional cis elements within the factor X promoter. Using gel mobility shift assays, the liver-enriched protein GATA-4 was identified as the protein binding to the GATA element at -96. GATA-4 transactivates the factor X promoter 28-fold in transient transfection experiments. It was also determined that the Sp family of transcription factors binds 2 DNase I-footprinted sites at -165 and -195. Disruption of Sp protein binding at either site reduces the promoter activity by half. Simultaneous disruption of both sites reduces the promoter activity 8-fold. This is the first report indicating the involvement of GATA-4 in the regulation of clotting factor expression. These observations provide novel insight into mechanisms by which the vitamin K-dependent coagulation factors are regulated.
Murine polyoma virus (MPyV) is a small DNA virus that induces tumors in multiple tissues of infected host. In this investigation, we show that cell lines derived from wild type virus-induced breast tumors are resistant to the growth inhibitory action of interferon beta (IFN-beta). Furthermore, replication of heterologous viruses such as vesicular stomatitis virus and encephalomyocarditis virus was not inhibited by IFN-beta in these cells. This effect was due to inhibition of IFN-stimulated gene expression by viral T antigen. Activation of IFN-stimulated gene factor 3 was inhibited in cells derived from a tumor induced by wild-type MPyV but not those from a mutant that lacks the pRB binding site of the large T antigen. Similarly IFN-gamma-inducible gene expression was also inhibited in cells transformed by wild-type virus. The levels of components of IFN-stimulated gene factor 3 and signal transducing Janus tyrosine kinases were comparable between the cells transformed by the wild-type and mutant viruses. The viral large T antigen bound to Janus tyrosine kinase 1 and inactivated signaling through IFN receptors. Thus, these studies identify a mechanism of viral resistance to IFN action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.