A method of para‐selective borylation of aromatic amides is described. The borylation proceeded via an unprecedented substrate–ligand distortion between the twisted aromatic amides and a newly designed ligand framework (defa) that is different from the traditionally used ligand (dtbpy) for the C−H borylation reactions. The designed ligand framework (defa) has led to the development of a new type of catalytic system that shows excellent para selectivity for a range of aromatic amides. Moreover, the designed ligand has shown excellent reactivity and selectivity for a range of heterocyclic aromatic amides. The identification of key transition states and intermediates using the DFT computations associated with the three regio‐isomeric pathways revealed that the most efficient catalytic pathway with the defa ligand leads to the para borylation while in the case of bpy the borylation at the para and meta sites compete.
The phase equilibrium data on organic analog of the nonmetal-nonmetal system, involving 2-cyanoacetamide (CA)-4-chloronitrobenzene (CNB), show the formation of a monotectic (0.10 mole fraction of CNB) and a eutectic (0.98 mole fraction of CNB) with a large miscibility gap starting from 0.10 mole fraction of CNB of monotectic (M) and ending at 0.92 mole fraction of CNB of monotectic horizontal (M h ); the upper consolute temperature T c being 63˚C above the monotectic horizontal at 118˚C and eutectic temperature is at 85˚C. The values of enthalpy of fusion of the pure components, the eutectic and the monotectic were determined by the differential scanning calorimetry (Mettler DSC-4000 system). Using these data, the size of the critical radius, interfacial energy, excess thermodynamic functions, entropy of fusion, and enthalpy of mixing were calculated. The solid-liquid interfacial energy data confirm the applicability of the Cahn wetting condition. While growth data obey the Hillig-Turnbull equation, the microstructural investigations give typical characteristic features of the eutectic and the monotectic of the system.
A method of para‐selective borylation of aromatic amides is described. The borylation proceeded via an unprecedented substrate–ligand distortion between the twisted aromatic amides and a newly designed ligand framework (defa) that is different from the traditionally used ligand (dtbpy) for the C−H borylation reactions. The designed ligand framework (defa) has led to the development of a new type of catalytic system that shows excellent para selectivity for a range of aromatic amides. Moreover, the designed ligand has shown excellent reactivity and selectivity for a range of heterocyclic aromatic amides. The identification of key transition states and intermediates using the DFT computations associated with the three regio‐isomeric pathways revealed that the most efficient catalytic pathway with the defa ligand leads to the para borylation while in the case of bpy the borylation at the para and meta sites compete.
The phase diagram of anthranilic acid and N,N-dimethylaminobenzaldehyde system gives two eutectics (E1 and E2) and a 1:1 intermolecular compound with congruent melting point. The mole fractions of anthranilic acid at E1 and E2 are 0.10 and 0.95, respectively. The negative values of heat of mixing of eutectics suggest that there is clustering of molecules in their eutectic liquid melt. The positive values of excess free energy for eutectics indicate that the interactions between the like molecules are stronger than those of unlike molecules. It can be inferred from single crystal X-ray analysis of the intermolecular compound that it crystallized in monoclinic unit cell with C2/c space group and a reasonably large sized intermolecular compound crystal was grown by slow evaporation technique at room temperature. The optical studies on the intermolecular compound give two strong emission bands with two lmax values one at 380 nm and second at 450 nm with total quantum efficiency 0.49.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.