Transport properties such as ionic conductivity, lithium transference number, and apparent salt diffusion coefficient are reported for solid polymer electrolytes (SPEs) prepared using several oligomeric bis[(perfluoroalkyl)sulfonyl]imide (fluorosulfonimide) lithium salts dissolved in high molecular weight poly(ethylene oxide) (PEO). The salt series consists of polyanions in which two discrete fluorosulfonimide anions are linked together by [(perfluorobutylene)disulfonyl]imide linker chains. The restricted diffusion technique was used to measure the apparent salt diffusion coefficients in SPEs, and cationic transference numbers were determined using both potentiostatic polarization and electrochemical impedance spectroscopy methods. A general trend of diminished salt diffusion coefficient with increasing anion size was observed and is opposite to the trend observed in ionic conductivity. This unexpected finding is rationalized in terms of the cumulative effects of charge carrier concentration, anion mobility, ion pairing, host plasticization by the anions, and salt phase segregation on the conductivity.
The influence of low-molecular-weight poly(ethylene glycol) (PEG, Mw ≈ 550 Da) plasticizers on the rheology and ion-transport properties of fluorosulfonimide-based polyether ionic melt (IM) electrolytes has been investigated experimentally and via molecular dynamics (MD) simulations. Addition of PEG plasticizer to samples of IM electrolytes caused a decrease in electrolyte viscosity coupled to an increase in ionic conductivity. MD simulations revealed that addition of plasticizer increased self-diffusion coefficients for both cations and anions with the plasticizer being the fastest diffusing species. Application of a VTF model to fit variable-temperature conductivity and fluidity data shows that plasticization decreases the apparent activation energy (Ea) and pre-exponential factor A for ion transport and also for viscous flow. Increased ionic conductivity with plasticization is thought to reflect a combination of factors including lower viscosity and faster polyether chain segmental dynamics in the electrolyte, coupled with a change in the ion transport mechanism to favor ion solvation and transport by polyethers derived from the plasticizer. Current interrupt experiments with Li/electrolyte/Li cells revealed evidence for salt concentration polarization in electrolytes containing large amounts of plasticizer but not in electrolytes without added plasticizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.