Field Programmable Gate Arrays (FPGAs), with partial reconfiguration (PR) technology present an attractive option for creating reliable platforms that adapt to changes in user objectives over time and respond to hardware/software anomalies automatically with selfhealing action. Conventional solutions for partial reconfiguration based self-configurable architectures experience severe hardware limitations on ability to move any partially reconfigurable module to any available region of the reconfigurable fabric and ability to relocate the module quickly. In this study we adopt the hardwarebased partial bitstream relocation technique, Accelerated Relocation Circuit (ARC), into the FPGA based wirelessly networked self-configurable architecture that employs traditional module based partial reconfiguration strategy. We show that the integrated architecture allows flexibility for module relocation, reduces the off-chip communication overhead, and observes up to 17x speedup for module relocation over the traditional Xilinx hardware internal configuration access port wrapper (HWICAP) based implementation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.