Patients with COVID-19 are at high risk for thrombotic arterial and venous occlusions. Lung histopathology often reveals fibrin-based blockages in the small blood vessels of patients who succumb to the disease. Antiphospholipid syndrome is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies targeting phospholipids and phospholipid-binding proteins (aPL antibodies). Case series have recently detected aPL antibodies in patients with COVID-19. Here, we measured eight types of aPL antibodies in serum samples from 172 patients hospitalized with COVID-19. These aPL antibodies included anticardiolipin IgG, IgM, and IgA; anti–β2 glycoprotein I IgG, IgM, and IgA; and anti-phosphatidylserine/prothrombin (aPS/PT) IgG and IgM. We detected aPS/PT IgG in 24% of serum samples, anticardiolipin IgM in 23% of samples, and aPS/PT IgM in 18% of samples. Antiphospholipid autoantibodies were present in 52% of serum samples using the manufacturer’s threshold and in 30% using a more stringent cutoff (≥40 ELISA-specific units). Higher titers of aPL antibodies were associated with neutrophil hyperactivity, including the release of neutrophil extracellular traps (NETs), higher platelet counts, more severe respiratory disease, and lower clinical estimated glomerular filtration rate. Similar to IgG from patients with antiphospholipid syndrome, IgG fractions isolated from patients with COVID-19 promoted NET release from neutrophils isolated from healthy individuals. Furthermore, injection of IgG purified from COVID-19 patient serum into mice accelerated venous thrombosis in two mouse models. These findings suggest that half of patients hospitalized with COVID-19 become at least transiently positive for aPL antibodies and that these autoantibodies are potentially pathogenic.
Potentiation of neutrophil extracellular trap (NET) release is one mechanism by which antiphospholipid antibodies (aPL Abs) effect thrombotic events in patients with antiphospholipid syndrome (APS). Surface adenosine receptors trigger cyclic AMP (cAMP) formation in neutrophils, and this mechanism has been proposed to regulate NETosis in some contexts. Here we report that selective agonism of the adenosine A 2A receptor (CGS21680) suppresses aPL Ab-mediated NETosis in protein kinase A-dependent fashion. CGS21680 also reduces thrombosis in the inferior vena cavae of both control mice and mice administered aPL Abs. The antithrombotic medication dipyridamole is known to potentiate adenosine signaling by increasing extracellular concentrations of adenosine and interfering with the breakdown of cAMP. Like CGS21680, dipyridamole suppresses aPL Ab-mediated NETosis via the adenosine A 2A receptor and mitigates venous thrombosis in mice. In summary, these data suggest an anti-inflammatory therapeutic paradigm in APS, which may extend to thrombotic disease in the general population.
Platelets are the chief effector cells in hemostasis. However, recent evidence suggests that platelets have multiple roles in host defense against infection. Reports by us and others showed that platelets functionally contribute to protection against Staphylococcus aureus (S. aureus) infection. In the current study, the capacity of mouse platelets to participate in host defense against S. aureus infection was determined by assessing two possibilities. First, we determined the ability of platelets to kill S. aureus directly; and second, we tested the possibility that platelets enhance macrophage phagocytosis and intracellular killing of S. aureus. We report here evidence in support of both mechanisms. Platelets effectively killed two different strains of S. aureus. A clinical isolate of methicillin resistant S. aureus (MRSA) was killed by platelets (>40% killing in 2 h) in a thrombin-dependent manner while a methicillin sensitive strain (MSSA) was killed to equal extent but did not require thrombin. Interestingly, thrombin-stimulated platelets also significantly enhanced peritoneal macrophage phagocytosis of both MRSA and MSSA by >70%, and restricted intracellular growth by >40%. Enhancement of macrophage anti-S. aureus activities is independent of contact with platelets but is mediated through releasable products, namely IL-1β. These data confirm our hypothesis that platelets participate in host defense against S. aureus both through direct killing of S. aureus and enhancing the antimicrobial function of macrophages in protection against S. aureus infection.
Platelets are critical to hemostatic and immunological function, and are key players in cancer progression, metastasis, and cancer-related thrombosis. Platelets interact with immune cells to stimulate anti-tumor responses and can be activated by immune cells and tumor cells. Platelet activation can lead to complex interactions between platelets and tumor cells. Platelets facilitate cancer progression and metastasis by: (1) forming aggregates with tumor cells; (2) inducing tumor growth, epithelial-mesenchymal transition, and invasion; (3) shielding circulating tumor cells from immune surveillance and killing; (4) facilitating tethering and arrest of circulating tumor cells; and (5) promoting angiogenesis and tumor cell establishment at distant sites. Tumor cell-activated platelets also predispose cancer patients to thrombotic events. Tumor cells and tumor-derived microparticles lead to thrombosis by secreting procoagulant factors, resulting in platelet activation and clotting. Platelets play a critical role in cancer progression and thrombosis, and markers of platelet-tumor cell interaction are candidates as biomarkers for cancer progression and thrombosis risk.
Patients with coronavirus disease 19 (COVID-19) are at high risk for thrombotic arterial and venous occlusions. At the same time, lung histopathology often reveals fibrin-based occlusion of small vessels in patients who succumb to the disease. Antiphospholipid syndrome (APS) is an acquired and potentially life-threatening thrombophilia in which patients develop pathogenic autoantibodies (aPL) targeting phospholipids and phospholipid-binding proteins. Small case series have recently detected aPL in patients with COVID-19. Here, we measured eight types of aPL (anticardiolipin IgG/IgM/IgA, anti-beta-2 glycoprotein I IgG/IgM/IgA, and anti- phosphatidylserine/prothrombin (PS/PT) IgG/IgM) in the sera of 172 patients hospitalized with COVID-19. We detected anticardiolipin IgM antibodies in 23%, anti-PS/PT IgG in 24%, and anti-PS/PT IgM in 18%. Any aPL was present in 52% of patients using the manufacturer's threshold and in 30% using a more stringent cutoff (>40 units). Higher levels of aPL were associated with neutrophil hyperactivity (including the release of neutrophil extracellular traps/NETs), higher platelet count, more severe respiratory disease, and lower glomerular filtration rates. Similar to patients with known and longstanding APS, IgG fractions isolated from patients with COVID-19 promoted NET release from control neutrophils. Furthermore, injection of these COVID-19 IgG fractions into mice accelerated venous thrombosis. Taken together, these studies suggest that a significant percentage of patients with COVID-19 become at least transiently positive for aPL and that these aPL are potentially pathogenic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.