To investigate the function of serotonergic neurons within the locus coeruleus, this brain nucleus of conscious, freely moving rats was superfused with artificial cerebrospinal fluid through a push-pull cannula and the extracellular concentration of serotonin was determined in the superfusate. Serotonin release was increased by depolarization with veratridine (5 microM) or 80 mM K+, while superfusion with tetrodotoxin (1 microM) or systemic administration of 8-hydroxy-2-(di-n-propylamino)tetralin substantially diminished the release rate of serotonin in the locus coeruleus. The pressor response to intravenous infusion of noradrenaline (4 micrograms/kg/min) was associated with a pronounced increase in the release rate of serotonin. Superfusion of the locus coeruleus with tetrodotoxin (1 microM) abolished the increase in serotonin release evoked by the pressor response. A fall of blood pressure produced by intravenous administration of nitroprusside (150 micrograms/kg/min) or chlorisondamine (3 mg/kg) diminished the release rate of serotonin. Immobilization, noise (95 dB) or tail pinch increased the release of serotonin in the locus coeruleus and slightly elevated blood pressure. Chlorisondamine abolished the rise in blood pressure elicited by tail pinch without influencing the increased serotonin release. Tail pinch-induced serotonin release was abolished by superfusion with tetrodotoxin. The findings demonstrate that neuronal serotonin release in the locus coeruleus responds to cardiovascular and sensory stimuli, suggesting a function of serotonergic neurons in central blood pressure regulation, as well as in the modulation of locus coeruleus activity by stress and noxious stimuli.
Background:The mechanism by which apoptotic internucleosomal DNA fragmentation occurs remains unclear. Results: CAD and DNAS1L3 cooperate to process chromatin degradation during apoptosis. DNAS1L3 achieves such function by translocating from the ER to the nucleus.
Conclusion:The results provide new insight on the mechanism by which chromatin degradation takes place during apoptosis. Significance: Our results exemplify the complexity of chromatin degradation during apoptosis.
BACKGROUND AND PURPOSESo far, there is only limited information about the regulation of the endogenous synthesis of hydrogen sulfide (H2S), an important gaseous signalling molecule. This study was done to evaluate the redox-dependent signalling events that regulate the expression of the H2S synthesising enzyme cystathionine-g-lyase (CSE) in rat mesangial cells.
EXPERIMENTAL APPROACHThe effects of platelet-derived growth factor (PDGF)-BB and antioxidants on CSE expression and activity in cultured rat renal mesangial cells were assessed. Activity of nuclear factor erythroid-2-related factor-2 (Nrf2) was measured as the binding capacity to a radiolabelled consensus element by electrophoretic mobility shift assay (EMSA). Furthermore, CSE and Nrf2 expression was analysed in a rat model of anti-Thy-1-induced glomerulonephritis by immunohistochemistry.
KEY RESULTSTreatment of mesangial cells with PDGF-BB resulted in a marked time-and dose-dependent up-regulation of CSE mRNA and protein levels, as well as CSE activity accompanied with increased formation of reactive oxygen species. Remarkably, co-administration of antioxidants, such as N-acetylcysteine, ebselen or diphenylene iodonium chloride, drastically reduced PDGF-BB-induced CSE expression. PDGF-BB induced binding of Nrf2 to a corresponding consensus antioxidant element in a redox-dependent manner. Furthermore, PDGF-BB-induced CSE expression in mouse mesangial cells was completely abolished in Nrf2 knockout mice compared with wild-type mice. In a rat model of anti-Thy-1-induced proliferative glomerulonephritis, we observed a marked up-regulation of CSE protein paralleled by a stabilization of Nrf2 protein.
CONCLUSIONS AND IMPLICATIONSPDGF-BB regulated CSE via a redox-mediated activation of Nrf2. Such action would aid the resolution of glomerular inflammatory diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.