This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Bridgeport's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.Abstract-Due to the high speed of internet and advances in technology, people are becoming more worried about information being hacked by attackers. Recently, many algorithms of steganography and data hiding have been proposed. Steganography is a process of embedding the secret information inside the host medium (text, audio, image and video). Concurrently, many of the powerful steganographic analysis software programs have been provided to unauthorized users to retrieve the valuable secret information that was embedded in the carrier files. Some steganography algorithms can be easily detected by steganalytical detectors because of the lack of security and embedding efficiency.In this paper, we propose a secure video steganography algorithm based on the principle of linear block code. Nine uncompressed video sequences are used as cover data and a binary image logo as a secret message. The pixels' positions of both cover videos and a secret message are randomly reordered by using a private key to improve the system's security. Then the secret message is encoded by applying Hamming code (7, 4) before the embedding process to make the message even more secure. The result of the encoded message will be added to random generated values by using XOR function. After these steps that make the message secure enough, it will be ready to be embedded into the cover video frames. In addition, the embedding area in each frame is randomly selected and it will be different from other frames to improve the steganography scheme's robustness. Furthermore, the algorithm has high embedding efficiency as demonstrated by the experimental results that we have obtained. Regarding the system's quality, the Pick Signal to Noise Ratio (PSNR) of stego videos are above 51 dB, which is close to the original video quality. The embedding payload is also acceptable, where in each video frame we can embed 16 Kbits and it can go up to 90 Kbits without noticeable degrading of the stego video's quality.
Recent developments in the speed of the Internet and information technology have made the rapid exchange of multimedia information possible. However, these developments in technology lead to violations of information security and private information. Digital steganography provides the ability to protect private information that has become essential in the current Internet age. Among all digital media, digital video has become of interest to many researchers due to its high capacity for hiding sensitive data. Numerous video steganography methods have recently been proposed to prevent secret data from being stolen. Nevertheless, these methods have multiple issues related to visual imperceptibly, robustness, and embedding capacity. To tackle these issues, this paper proposes a new approach to video steganography based on the corner point principle and LSBs algorithm. The proposed method first uses Shi-Tomasi algorithm to detect regions of corner points within the cover video frames. Then, it uses 4-LSBs algorithm to hide confidential data inside the identified corner points. Besides, before the embedding process, the proposed method encrypts confidential data using Arnold's cat map method to boost the security level. Experimental results revealed that the proposed method is highly secure and highly invisible, in addition to its satisfactory robustness against Salt & Pepper noise, Speckle noise, and Gaussian noise attacks, which has an average Structural Similarity Index (SSIM) of more than 0.81. Moreover, the results showed that the proposed method outperforms state-of-the-art methods in terms of visual imperceptibility, which offers excellent peak signalto-noise ratio (PSNR) of average 60.7 dB, maintaining excellent embedding capacity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.