Purpose:The objective of this study is to evaluate the fracture strength and mode of failure of endodontically treated teeth with flared canals restored with two fiber reinforced systems (glass fiber and quartz fiber) and one base metal cast post and core system.Materials and Methods:Forty five anterior teeth were decoronated at cemento-enamel junction and were endodontically treated. Post space was prepared and randomly divided into three groups according to post system. Specimens were loaded at 45° in a universal testing machine at a cross head speed of 0.5 mm/min until failure. The mode of failure was classified as repairable or non-repairable.Results:Teeth restored with cast posts have fracture strength twice that of teeth restored with fiber posts. Fiber-reinforced posts failed at a certain compressive force but they were repairable unlike the non-repairable fracture seen with cast posts.Conclusion:The results of this study showed that, fracture strength and mode of failure in anterior teeth with flared canals varied according to the type of post used to support a crown.
Pathways for the conversion of the unknown bis(diboranyl) isomer of tetraborane(10) (B(4)H(10)) to the known arachno isomer have been determined for the first time with the use of an electron correlation ab initio quantum chemical method and without the use of constraints in determination of the transition structures. Two isomers of tetraborane(10), one new, with a pentacoordinated boron atom have been found on the theoretical potential energy surface. Several other pathways for molecular rearrangement of tetraborane(10) have also been characterized. The theoretical method was MP2 theory with the 6-31G(d,p) basis set. The most likely pathway for the conversion of the bis(diboranyl) isomer of tetraborane(10) to the arachno isomer is a concerted pathway with two pentacoordinated intermediates. The highest energy transition state for this pathway lies 27.7 kcal/mol above the bis(diboranyl) isomer. At the same level of the theory, the bis(diboranyl) isomer lies 9.2 kcal/mol above the known arachno isomer. The two isomers with a pentacoordinated boron atom lie 12.5 and 13.1 kcal/mol above the arachno isomer.
Oxy-fuel combustion is one of the emerging technologies to capture and store CO2 emissions generated from thermal power plants. Research programs are in full swing to find out the possibility of retrofitting existing coal fired power plants with oxy-fuel mode combustion. Most of the Indian thermal power plants are pulverized coal based and use sub-bituminous Indian coals. These coals differ from the foreign coals in respect of maceral composition, ash content and combustion kinetics. It is imperative to understand the burning characteristics of Indian coals in oxy-fuel environment to evolve the suitable design for the retrofit of Indian boilers with oxy-fuel mode for the efficient and economic carbon capture without losing thermal efficiency. The present study involves the assessment of the kinetics of pyrolysis and char oxidation of three different Indian coals with varying ash contents viz. 33 to 44% in normal air and in oxy-fuel environment with three different CO2/O2 concentrations (60:40, 70:30 and 80:20) by Thermo Gravimetric method (TGA). The results are compared in respect of weight loss pattern, peaking temperatures and weighted mean activation energy. The results have shown that the combustion kinetics of the selected high ash Indian coals in normal air combustion is more comparable with 70:30 and 80:20 than 60:40 CO2/O2 concentrations. The methodology adopted in the present study is found useful for comparing the combustion kinetics of various types of coals in normal air and oxy-fuel environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.