A rising proportion of older people has more demand on services including hospitals, retirement homes, and assisted living facilities. Regaining control of this population’s expectations will pose new difficulties for lawmakers, medical professionals, and the society at large. Smart technology can help older people to have independent and fulfilling lives while still living safely and securely in the community. In the last several decades, the number of sectors using robots has risen. Comrade robots have made their appearance in old human life, with the most recent notable appearance being in their care. The number of elderly individuals is increasing dramatically throughout the globe. The source of the story is the use of robots to help elderly people with day-to-day activities. Speech data and facial recognition model are done with AI model. Here, with the Comrade robotic model, elder people’s healthcare system is designed with better analysis state. The aim is to put in place a simple robotic buddy to determine the health of the old person via a headband that has been given to them. Comrade robot may do things like senior citizens home automation, home equipment control, safety, and wellbeing sensing, and, in emergency situation, routine duties like navigating in the outside world. The fear that robotics and artificial intelligence would eventually eliminate most of the jobs is increasing. It is anticipated that, in order to survive and stay relevant in the constantly shifting environment of work, workers of the future will need to be creative and versatile and prepared to identify new business possibilities and change industry to meet challenges of the world. According to the research, reflective practice, time management, communicating, and collaboration are important in fostering creativity.
Purpose
Microstrip patch antenna is generally used for several communication purposes particularly in the military and civilian applications. Even though several techniques have been made numerous achievements in several fields, some systems require additional improvements to meet few challenges. Yet, they require application-specific improvement for optimally designing microstrip patch antenna. The paper aims to discuss these issues.
Design/methodology/approach
This paper intends to adopt an advanced meta-heuristic search algorithm called as grey wolf optimization (GWO), which is said to be inspired by the hunting behaviour of grey wolves, for the design of patch antenna parameters. The searching for the optimal design of the antenna is paced up using the opposition-based solution search. Moreover, the proposed model derives a nonlinear objective model to aid the design of the solution space of antenna parameters. After executing the simulation model, this paper compares the performance of the proposed GWO-based microstrip patch antenna with several conventional models.
Findings
The gain of the proposed model is 27.05 per cent better than WOAD, 2.07 per cent better than AAD, 15.80 per cent better than GAD, 17.49 per cent better than PSAD and 3.77 per cent better than GWAD model. Thus, it has proved that the proposed antenna model has attained high gain, leads to cause superior performance.
Originality/value
This paper presents a technique for designing the microstrip patch antenna, using the proposed GWO algorithm. This is the first work utilizes GWO-based optimization for microstrip patch antenna.
Microstrip Patch Antennas (MPAs) are generally renowned for their adaptability regarding feasible geometries, which makes them appropriate for numerous diverse conditions. The suitability to integrate and the trivial structure with microwave incorporated circuits was said to be the major advantage among several advantages. MPA poses constricted bandwidth; thus it has a complication while tuning. In addition, MPAs are renowned for their reduced gain. As a result, there is a necessity to raise the gain and bandwidth of MPA. This work intends to put forward a novel approach that gets a non-linear objective for assisting the modeling of solution spaces for antenna constraints. Thus, "Salp Swarm based Shark Smell Optimization (SS-SSO) that hybrids the concepts of Salp Swarm Algorithm (SSA) and Shark Smell Optimization (SSO)" is developed that tuned the constraints of MPA. The implication of the developed approach is to boost the antenna gain by optimal electing of dielectric value, patch length, substrate width, and thickness of MPA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.