Purpose In this paper, an attempt has been made to delineate the physical processes which lead to the westward movement of the North Indian Ocean tropical cyclone LEHAR. Methods The Advanced Weather Research and Forecasting (ARW) model is used to simulate LEHAR with 27 and 9 km resolutions. In addition to that, all terms of the complete vorticity equation are computed to obtain the contribution of each term for the vorticity tendency. The vorticity tendency is calculated in four sectors, namely northwest, northeast, southwest, and southeast and assumed that the cyclone moves from its existing location to the nearest point where the vortices tendency is maximum. Results The results indicate that the model performed well in simulating the characteristics of cyclone compared with the Satellite and other observations. It is noticed that the vorticity stretching term contributes most to the positive vorticity tendency. The second highest contribution is from the horizontal advection thus indicating the secondary importance of steering. Conclusions The distribution of lightning flash rates are higher in the SW and followed by NW sectors of the cyclone indicate more strong convective clouds are in SW sector. The equivalent potential temperatures (h e ) at different stages of before, during and after the mature stage of the cyclone reveals that the wind-induced surface heat (WISH) exchange process is a plausible mechanism for the intensification of LEHAR.
Recent rapid changes in the global climate and warming temperatures increase the demand for local and regional weather forecasting and analysis to improve the accuracy of seasonal forecasting of extreme events such as droughts and floods. On the other hand, the role of ocean variability is at a focal point in improving the forecasting at different time scales. Here we study the effect of Indian Ocean mean sea level anomaly (MSLA) and sea surface temperature anomalies (SSTA) on Indian summer monsoon rainfall during 1993-2019. While SSTA and MSLA have been increasing in the southwestern Indian Ocean (SWIO), these parameters' large-scale variability and pre-monsoon winds could impact the inter-annual Indian monsoon rainfall variability over homogeneous regions. Similarly, antecedent heat capacitance over SWIO on an inter-annual time scale has been the key to the extreme monsoon rainfall variability from an oceanic perspective. Though both SSTA and MSLA over SWIO have been influenced by El Niño-southern oscillation (ENSO), the impact of SWIO variability was low on rainfall variability over several homogeneous regions. However, rainfall over northeast (NE) and North India (NI) has been moulded by ENSO, thus changing the annual rainfall magnitude. Nevertheless, the impact of ENSO on monsoon rainfall through SWIO variability during the antecedent months is moderate. Thus, the ENSO influence on the atmosphere could be dominating the ocean part in modulating the inter-annual variability of the summer monsoon. Analysis shows that the cooler (warmer) anomaly over the western Indian Ocean affects rainfall variability adversely (favourably) due to the reversal of the wind pattern during the pre-monsoon period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.