The occupancy of caches has tended to be dominated by the logic bit value '0' approximately 75% of the time. Periodic bit flipping can reduce this to 50%. Combining cache power saving strategies with bit flipping can lower the effective logic bit value '0' occupancy ratios even further. We investigate how Negative Bias Temperature Instability (NBTI) affects different power saving cache strategies employing symmetric and asymmetric 6-transistor (6T) and 8T Static Random Access Memory (SRAM) cells. We notice that greater than 38% to 66% of the recovery in stability parameters (SNM and WNM) under different power saving cache strategies have been achieved for different SRAM cells based caches. We also study the process variations effect along with NBTI for 32nm and 45nm technology node. It is observed that the rate of recovery in asymmetric SRAM cells based caches is slightly higher than the symmetric and 8T SRAM cells based caches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.