The rotavirus (RV) genome is replicated and packaged into virus progeny in cytoplasmic inclusions called viroplasms, which require interactions between RV nonstructural proteins NSP2 and NSP5. How viroplasms form remains unknown. We previously found two forms of NSP2 in RV-infected cells: a cytoplasmically dispersed dNSP2, which interacts with hypophosphorylated NSP5; and a viroplasm-specific vNSP2, which interacts with hyperphosphorylated NSP5. Other studies report that CK1α, a ubiquitous cellular kinase, hyperphosphorylates NSP5, but requires NSP2 for reasons that are unclear. Here we show that silencing CK1α in cells before RV infection resulted in (i) >90% decrease in RV replication, (ii) disrupted vNSP2 and NSP5 interaction, (iii) dispersion of vNSP2 throughout the cytoplasm, and (iv) reduced vNSP2 protein levels. Together, these data indicate that CK1α directly affects NSP2. Accordingly, an in vitro kinase assay showed that CK1α phosphorylates serine 313 of NSP2 and triggers NSP2 octamers to form a lattice structure as demonstrated by crystallographic analysis. Additionally, a dual-specificity autokinase activity for NSP2 was identified and confirmed by mass spectrometry. Together, our studies show that phosphorylation of NSP2 involving CK1α controls viroplasm assembly. Considering that CK1α plays a role in the replication of other RNA viruses, similar phosphorylation-dependent mechanisms may exist for other virus pathogens that require cytoplasmic virus factories for replication.M any viral pathogens, including both DNA viruses (poxviruses) and RNA viruses [rotavirus (RV), orthoreovirus, hepatitis C virus, dengue virus, Marburg virus] replicate in cytoplasmic compartments that are physical scaffolds composed of both viral and cellular proteins (1-3). These compartments, excluded from the rest of the cytoplasm, are sites where the virus genome is replicated and progeny particles are assembled. Such replication compartments are alternately known as virus factories, virus replication centers or complexes, and viroplasms. Exactly how these virus factories form is largely unknown, so it is intriguing to consider that there may be common mechanisms that initiate their formation and regulate their assembly.RV-induced severe, dehydrating gastroenteritis remains a leading cause of morbidity and mortality in infants and children less than 5 y of age worldwide and accounts for greater than 200,000 deaths annually (4). To begin to understand the mechanism of replication factory assembly, we studied the assembly of RV replication complexes known as viroplasms. Viroplasm formation requires the interaction of two nonstructural proteins, NSP2 and NSP5, and expression of NSP2 with NSP5 in cells lacking all other viral proteins results in the formation of viroplasm-like structures (VLS) (5). Loss of either NSP2 or NSP5 abolishes viroplasm formation and rotavirus replication (6-9). While information about the individual characteristics of NSP2 and NSP5 and some knowledge of how they physically interact are available, exactly...
Use of cellulase for denim washing is a standard eco-friendly technique to achieve desirable appearance and softness for cotton fabrics and denims. But enzymatic washing of denim till date involved acid cellulase (Trichoderma reesei) and neutral cellulase (Humicola isolens) the use of which has a drawback of backstaining of the indigo dye on to the fabric. Though it has been suggested that pH is a major factor in controlling backstaining there are no reports on use of cellulase under alkaline conditions for denim washing. In this study for the first time an alkali stable endoglucanase from alkalothermophilic Thermomonospora sp. (T-EG) has been used for denim biofinishing under alkaline conditions. T-EG is effective in removing hairiness with negligible weight loss and imparting softness to the fabric. Higher abrasive activity with lower backstaining was a preferred property for denim biofinishing exhibited by T-EG. The activities were comparable to acid and neutral cellulases that are being regularly used. The enzyme was also effective under non-buffering conditions which is an added advantage for use in textile industry. A probable mechanism of enzymatic finishing of cotton fabric has been represented based on the unique properties of T-EG.
BackgroundMore than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters.Methodology/Principal FindingsHere we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A+1-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition.Conclusions/SignificanceWe identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single “focused” TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.