A small-scale biomechanical disc culture system was designed to stimulate intervertebral disc (IVD) 'motion segment' in culture environment with load-controlled compression and combined load (compression+shear). After 7 days of diurnal mechanical loading, cell viability of discs stimulated with static compression load (0.25 MPa) and static combined load (compression (0.25 MPa)+shear (1.5N)) were similar (>90 per cent) to unloaded controls. Mechanically stimulated discs showed decrease in static/dynamic moduli, early stress relaxation, and loss of disc height after 7 days of diurnal loading. Histological data of discs indicated load-induced transformations that were not apparent in controls. The feasibility of studying the mechanobiology of intact IVD as a motion segment was demonstrated. Media conditioning (improve tissue stability in long-term culture) and application of biochemical gene expression assays (differential tissue response to types of mechanical stimulation) are proposed as future improvements. The study suggests that the limitations in studying mechanobiology of IVD pathology in vitro can be overcome and it is possible to understand the physiologically relevant mechanism of IVD pathology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.