Cyclic nucleotide-gated (CNG) ion channels are central participants in sensory transduction, generating the electrical response to light in retinal photoreceptors and to odorants in olfactory receptors. They are expressed in many other tissues where their specific roles in signaling remain unclear. As is true for many other ion channels, there is a paucity of specific blockers needed to dissect the contributions of these channels to cell signaling. CNG channels are members of the superfamily of voltage-gated ion channels, and the local anesthetic tetracaine is known to block CNG channels in a manner that resembles the block of voltage-gated Na(+) channels. The amine in local anesthetics interacts with the charged selectivity filter of Na(+) channels, while the aromatic ring gets stuck in the inner cavity and has hydrophobic interactions with the residues lining that region. Here we have synthesized a derivative of tetracaine, 3-[(aminopropyl)amino]-N,N-dimethyl-N-(2-[[4-(butylamino)benzoyl]oxy]ethyl)propan-1-aminium acetate (APPA-tetracaine), that contains three positively charged amines at physiological pH instead of one. This compound blocked several different CNG channels in the picomolar to nanomolar concentration range at positive membrane potentials, making it several orders of magnitude more potent than tetracaine. In contrast, significant block of Na(+) channels by APPA-tetracaine required concentrations of hundreds of nanomolar. The results suggest that the highly charged moiety of APPA-tetracaine interacts strongly with the negative charge cluster in the selectivity filter of CNG channels. We propose that a variety of potent and specific ion channel blockers could be generated by expanding on traditional blocker structures to target the selectivity filters of other channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.