Lupus nephritis (LN) is a serious manifestation of SLE. Therapeutic studies in mouse LN models do not always predict outcomes of human therapeutic trials, raising concerns about the human relevance of these pre-clinical models. In this study we used an unbiased transcriptional network approach to define in molecular terms similarities and differences between three lupus models and human LN. Genome wide gene expression networks were generated using natural language processing and automated promoter analysis and compared across species via suboptimal graph matching. The three murine models and human LN share both common and unique features. The 20 commonly shared network nodes reflect the key pathologic processes of immune cell infiltration/activation, endothelial cell activation/injury and tissue remodeling/fibrosis, with macrophage/dendritic cell activation as a dominant cross-species shared transcriptional pathway. The unique nodes reflect differences in numbers and types of infiltrating cells and degree of remodeling between the three mouse strains. To define mononuclear phagocyte derived pathways in human LN, gene sets activated in isolated NZB/W renal mononuclear cells were compared with human LN kidney profiles. A tissue compartment specific macrophage activation pattern was seen, with NFκB1 and PPARγ as major regulatory nodes in the tubulointerstitial and glomerular networks respectively. Our study defines which pathologic processes in murine models of LN recapitulate the key transcriptional processes active in human LN and suggests that there are functional differences between mononuclear phagocytes infiltrating different renal microenvironments.
Monocytes are critical defense components that play an important role in the primary innate immune response. The heterogeneous nature of monocytes and their ability to differentiate into either monocyte-derived macrophages or monocyte-derived dendritic cells allows them to serve as a bridge between the innate and adaptive immune responses. Current studies of monocytes based on immunofluorescence, single-cell RNA sequencing and whole mass spectrometry finger printing reveals different classification systems for monocyte subsets. In humans, three circulating monocyte subsets are classified based on relative expression levels of CD14 and CD16 surface proteins, namely classical, intermediate and non-classical subsets. Transcriptomic analyses of these subsets help to define their distinct functional properties. Tuberculosis (TB) is a disease instigated by the deadly pathogen Mycobacterium tuberculosis. Current research on monocytes in TB has indicated that there are alterations in the frequency of intermediate and non-classical subsets suggesting their impact in bacterial persistence. In this review, we will focus on these monocyte subsets, including their classification, frequency distribution, cytokine profiles, role as a biomarker and will comment on future directions for understanding the salient phenotypic and functional properties relevant to TB pathogenesis.
Costimulatory blockade with CTLA4Ig and anti-CD40L along with a single dose of cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice. To understand the mechanisms for remission and for impending relapse, we examined the expression profiles of 61 inflammatory molecules in the perfused kidneys of treated mice and untreated mice at different stages of disease. Further studies using flow cytometry and immunohistochemistry allowed us to determine the cellular origins of several key markers. We show that only a limited set of inflammatory mediators is expressed in the kidney following glomerular immune complex deposition but before the onset of proteinuria. Formation of a lymphoid aggregate in the renal pelvis precedes the invasion of the kidney by inflammatory cells. Regulatory molecules are expressed early in the disease process and during remission but do not prevent the inevitable progression of active inflammation. Onset of proliferative glomerulonephritis and proteinuria is associated with activation of the renal endothelium, expression of chemokines that mediate glomerular cell infiltration, and infiltration by activated dendritic cells and macrophages that migrate to different topographical areas of the kidney but express a similar profile of inflammatory cytokines. Increasing interstitial infiltration by macrophages and progressive tubular damage, manifested by production of lipocalin-2, occur later in the disease process. Studies of treated mice identify a type II (M2b)-activated macrophage as a marker of remission induction and impending relapse and suggest that therapy for systemic lupus erythematosus nephritis should include strategies that prevent both activation of monocytes and their migration to the kidney.
Renal infiltration with mononuclear cells is associated with poor prognosis in SLE. A renal macrophage/dendritic cell signature is associated with onset of nephritis in NZB/W mice and immune modulating therapies can reverse this signature and the associated renal damage despite ongoing immune complex deposition. In nephritic NZB/W mice renal F4/80hi/CD11cint macrophages are located throughout the interstitium whereas F4/80lo/CD11chi dendritic cells accumulate in perivascular lymphoid aggregates. We show here that F4/80hi/CD11cint renal macrophages have a Gr1lo/Ly6Clo/VLA4lo/MHCIIhi/CD43lo/CD62Llo phenotype, different to that described for inflammatory macrophages. At nephritis onset F4/80hi/CD11cint cells upregulate cell surface CD11b, acquire cathepsin and MMP activity and accumulate large numbers of autophagocytic vacuoles; these changes reverse after induction of remission. Latex bead labeling of peripheral blood Gr1lo monocytes indicates that these are the source of F4/80hi/CD11cint macrophages. CD11chi/MHCIIlo dendritic cells are found in the kidneys only after proteinuria onset, turnover rapidly, and disappear rapidly after remission induction. Gene expression profiling of the F4/80hi/CD11cint population displays increased expression of pro-inflammatory, regulatory and tissue repair/degradation associated genes at nephritis onset that reverses with remission induction. Our findings suggest that mononuclear phagocytes with an aberrant activation profile contribute to tissue damage in lupus nephritis by mediating both local inflammation and excessive tissue remodeling.
Objective. To investigate the mechanism by which interferon-␣ (IFN␣) accelerates systemic lupus erythematosus (SLE) in (NZB ؋ NZW)F 1 (NZB/NZW) mice.Methods. NZB/NZW mice were treated with an adenovirus expressing IFN␣. In some mice, T cells were depleted with an anti-CD4 antibody. The production of anti-double-stranded DNA (anti-dsDNA) antibodies was measured by enzyme-linked immunosorbent assay and enzyme-linked immunospot assay. Germinal centers and antibody-secreting cells (ASCs) in spleens and IgG deposition and leukocyte infiltrates in kidneys were visualized by immunofluorescence staining. The phenotype of splenic cells was determined by flow cytometry. Finally, somatic hypermutation and gene usage in V H regions of IgG2a and IgG3 were studied by single-cell polymerase chain reaction.Results. IFN␣-accelerated lupus in NZB/NZW mice was associated with elevated serum levels of IgG2 and IgG3 anti-dsDNA antibodies and accumulation of many IgG ASCs in the spleen, which did not develop into long-lived plasma cells. Furthermore, IgG2a and IgG3 antibodies in the mice were highly somatically mutated and used distinct repertoires of V H genes. The induction of SLE in the mice was associated with an increase in B cell Toll-like receptor 7 expression, increased serum levels of BAFF, interleukin-6 (IL-6), and tumor necrosis factor ␣, and induction of T cells expressing IL-21. Although IFN␣ drove a T cellindependent increase in serum levels of IgG, autoantibody induction and the development of nephritis were both completely dependent on CD4؉ T cell help.Conclusion. These findings demonstrate that, although IFN␣ activates both innate and adaptive immune responses in NZB/NZW mice, CD4؉ T cells are necessary for IFN␣-driven induction of anti-dsDNA antibodies and clinical SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.