This paper studies the global Mittag–Leffler stability and stabilization analysis of fractional-order quaternion-valued memristive neural networks (FOQVMNNs). The state feedback stabilizing control law is designed in order to stabilize the considered problem. Based on the non-commutativity of quaternion multiplication, the original fractional-order quaternion-valued systems is divided into four fractional-order real-valued systems. By using the method of Lyapunov fractional-order derivative, fractional-order differential inclusions, set-valued maps, several global Mittag–Leffler stability and stabilization conditions of considered FOQVMNNs are established. Two numerical examples are provided to illustrate the usefulness of our analytical results.
This paper studies the global asymptotic stability and dissipativity problem for a class of neutral type stochastic Markovian Jump Static Neural Networks (NTSMJSNNs) with time-varying delays. By constructing an appropriate Lyapunov-Krasovskii Functional (LKF) with some augmented delay-dependent terms and by using integral inequalities to bound the derivative of the integral terms, some new sufficient conditions have been obtained, which ensure that the global asymptotic stability in the mean square. The results obtained in this paper are expressed in terms of Strict Linear Matrix Inequalities (LMIs), whose feasible solutions can be verified by effective MATLAB LMI control toolbox. Finally, examples and simulations are given to show the validity and advantages of the proposed results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.