Abstract-Hyracks is a new partitioned-parallel software platform designed to run data-intensive computations on large shared-nothing clusters of computers. Hyracks allows users to express a computation as a DAG of data operators and connectors. Operators operate on partitions of input data and produce partitions of output data, while connectors repartition operators' outputs to make the newly produced partitions available at the consuming operators. We describe the Hyracks end user model, for authors of dataflow jobs, and the extension model for users who wish to augment Hyracks' built-in library with new operator and/or connector types. We also describe our initial Hyracks implementation. Since Hyracks is in roughly the same space as the open source Hadoop platform, we compare Hyracks with Hadoop experimentally for several different kinds of use cases. The initial results demonstrate that Hyracks has significant promise as a next-generation platform for dataintensive applications.
ASTERIX is a new data-intensive storage and computing platform project spanning UC Irvine, UC Riverside, and UC San Diego. In this paper we provide an overview of the ASTERIX project, starting with its main goal-the storage and analCommunicated by: 186 Distrib Parallel Databases (2011) 29: 185-216 ysis of data pertaining to evolving-world models. We describe the requirements and associated challenges, and explain how the project is addressing them. We provide a technical overview of ASTERIX, covering its architecture, its user model for data and queries, and its approach to scalable query processing and data management. AS-TERIX utilizes a new scalable runtime computational platform called Hyracks that is also discussed at an overview level; we have recently made Hyracks available in open source for use by other interested parties. We also relate our work on ASTERIX to the current state of the art and describe the research challenges that we are currently tackling as well as those that lie ahead.
AsterixDB is a new, full-function BDMS (Big Data Management System) with a feature set that distinguishes it from other platforms in today's open source Big Data ecosystem. Its features make it well-suited to applications like web data warehousing, social data storage and analysis, and other use cases related to Big Data. AsterixDB has a flexible NoSQL style data model; a query language that supports a wide range of queries; a scalable runtime; partitioned, LSM-based data storage and indexing (including B + -tree, R-tree, and text indexes); support for external as well as natively stored data; a rich set of built-in types; support for fuzzy, spatial, and temporal types and queries; a built-in notion of data feeds for ingestion of data; and transaction support akin to that of a NoSQL store. Development of AsterixDB began in 2009 and led to a mid-2013 initial open source release. This paper is the first complete description of the resulting open source AsterixDB system. Covered herein are the system's data model, its query language, and its software architecture. Also included are a summary of the current status of the project and a first glimpse into how AsterixDB performs when compared to alternative technologies, including a parallel relational DBMS, a popular NoSQL store, and a popular Hadoop-based SQL data analytics platform, for things that both technologies can do. Also included is a brief description of some initial trials that the system has undergone and the lessons learned (and plans laid) based on those early "customer" engagements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.