Signal-processing techniques have been widely used in structural health monitoring and nondestructive evaluation. Wavelet analysis, a relatively new mathematical and signal-processing tool, for damage detection in various civil and mechanical structures. It is a time-frequency analysis that provides more detailed information about nonstationary signals which traditional Fourier analysis miss. This paper aims to provide the damage identification in an existing 100-year-old deck-type steel truss bridge using-frequency-and time-frequency-based approaches. The dynamic testing of steel bridge was carried out using accelerometers for the damaged state and after partial retrofitting under similar environmental conditions and instrumental set up. The comparison is carried out using power spectral density, short-time Fourier transform, and wavelet packet transform with respect to both the upstream and the downstream trusses of the bridge. Higher and uniform dissipation of energy at resonatingfrequency of the respective node after retrofitting showed intactness of joints. The variations of power spectral density in the first mode of the upstream and the downstream trusses clearly revealed improvements in the bridge signifying the importance of generating a signature of bridge before and after retrofitting. The status upgradations for the upstream and the downstream trusses obtained were different due to differential levels of damage in the bridge. Also, after retrofitting, the structural elemental behavior obtained was not the same as desired.
An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive formfinding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.