Chiral allenes are readily accessed in a single pot operation in the reaction of terminal alkynes, aldehydes, chiral secondary amines, and zinc halides in good yields (up to 77% yield) and excellent enantioselectivities (up to 99% ee) in toluene at 120 °C. The reaction proceeds through initial formation of chiral propargylamine intermediates with creation of a new stereogenic center and subsequent chirality transfer via an intramolecular hydride shift to produce chiral allenes with high enantiomeric purities.
Copper bromide promoted reactions of aldehydes, 1-alkynes, and chiral 2-dialkylaminomethylpyrrolidine at 25 °C give the corresponding chiral propargylamine derivatives in up to 96% yield and 99:1 dr that are readily converted to the corresponding disubstitued chiral allenes in up to 81% yield and 99% ee upon reaction with CuI in dioxane at 100 °C.
Alkynyl hydrazones are synthesized conveniently from 2-oxo-3-butynoates and hydrazine by suppressing the susceptible formation of pyrazoles. The resultant hydrazones are transformed into alkynyl diazoacetates under metal-free and mild oxidative conditions in excellent yields. Further, the alkynyl cyclopropane and propargyl silane carboxylates are synthesized in good yields by developing an unprecedented copper-catalyzed alkynyl carbene transfer reaction.
An organocatalytic kinetic resolution of racemic secondary nitroallylic alcohols via Michael/acetalization sequence to give fully substituted tetrahydropyranols is described. The process affords the products with high to excellent stereoselectivities (up to 19.9:1.5:1 dr and 98% ee). The highly enantioenriched, less reactive (S)-nitroallylic alcohols 3 were isolated with good to high chemical yields (30-44%). The synthetic application of the resolved substrate is shown toward the synthesis of enantioenriched (+)-(2S,3R)-3-amino-2-hydroxy-4-phenylbutyric acid.
Two transition-metal-free methods to access substituted phenols via the arylation of silanols or hydrogen peroxide with diaryliodonium salts are presented. The complementary reactivity of the two nucleophiles allows synthesis of a broad range of phenols without competing aryne formation, as illustrated by the synthesis of the anesthetic Propofol. Furthermore, silyl-protected phenols can easily be obtained, which are suitable for further transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.