In this present research, the machinability studies of TiAlN/TiCN, TiCN/TiAlN coated and uncoated inserts were investigated on machining custom 450 alloy. The machining input parameters such as feed rate (f), cutting speed (V) and depth of cut (d) are set using orthogonal array. The machining output parameters such as surface roughness, tool wear and cutting forces were studied for its parametric contribution and it was analyzed using Analysis of Variance (ANOVA). Further, the tool wear obtained was studied using scanning electron microscopic images and energy dispersive spectroscopy analysis was conducted to check the addition of work material elements to the coated tool surface. The results show that, the feed rate is the most contributing factor in deciding resultant forces, surface roughness and tool wear respectively. TiAlN/TiCN coated carbide tool has obtained improved machinability, when compared to TiCN/TiAlN coated carbide and uncoated carbide inserts. To obtain one optimal level for all three responses of three types of tools, multi criteria decision making approach, named utility concept approach is selected. Based on the MCDM analysis, it is found that trial number 4 gives better experimental output of improved surface integrity, lower resultant force and less tool wear for all types of tools.
Herein, a biomimetic coating of hydroxyapatite (HA)–Al2O3 and HA–ZrO2 was deposited on Ti–6Al–4V-alloy using vacuum plasma spray (VPS) technique. The bond-coat of ZrO2 has been introduced between the substrate and reinforced HA coatings to study the effect of bond-coat on structural, mechanical properties and electrochemical corrosion performance of the developed coatings. In addition, the impact of thermal treatment of coating was investigated on these properties too. Coating characteristics, such as morphology, porosity, surface roughness, and crystallinity were investigated. The corrosion performance of coatings was tested in Hank’s-based salt solution (HBSS). Significant enhancement in crystallinity and surface-hardness has been witnessed after heat treatment; nevertheless, porosity reduced. The electrochemical corrosion study revealed that the corrosion resistance of heat-treated samples was better than the as-sprayed coatings samples. The intensity of XRD peaks of all coatings increased after 24[Formula: see text]h immersion in HBSS for the electrochemical test in comparison to the intensity of peaks before the corrosion test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.