Diseases have adverse effects on crop production and yield loss. Various diseases such as leaf rust, stem rust, and strip rust can affect yield quality and quantity for a studied area. In addition, manual wheat disease identification and interpretation is time-consuming and cumbersome. Currently, decisions related to plants mainly rely on the level of expertise in the domain. To resolve these challenges and to identify wheat disease as early as possible, we implemented different deep learning models such as Inceptionv3, Resnet50, and VGG16/19. This research was conducted in collaboration with Bishoftu Agricultural Research Institute, Ethiopia. Our main objective was to automate plant-disease identification using advanced deep learning approaches and image data. For the experiment, RGB image data were collected from the Bishoftu area. From the experimental results, the VGG19 model classified wheat disease with 99.38% accuracy.
Higher dimensionality, Hughes phenomenon, spatial resolution of image data, and presence of mixed pixels are the main challenges in a multi-spectral image classification process. Most of the classical machine learning algorithms suffer from scoring optimal classification performance over multi-spectral image data. In this study, we propose stack-based ensemble-based learning approach to optimize image classification performance. In addition, we integrate the proposed ensemble learning with XGBoost method to further improve its classification accuracy. To conduct the experiment, the Landsat image data has been acquired from Bishoftu town located in the Oromia region of Ethiopia. The current study’s main objective was to assess the performance of land cover and land use analysis using multi-spectral image data. Results from our experiment indicate that, the proposed ensemble learning method outperforms any strong base classifiers with 99.96% classification performance accuracy.
The Internet of Things (IoT) plays a critical role in remotely monitoring a wide variety of different application sectors, including agriculture, building, and energy. The wind turbine energy generator (WTEG) is a real-world application that can take advantage of IoT technologies, such as a low-cost weather station, where human activities can be significantly affected by enhancing the production of clean energy based on the known direction of the wind. Meanwhile, common weather stations are neither affordable nor customizable for specific applications. Moreover, due to weather forecast changes over time and location within the same city, it is not efficient to rely on a limited number of weather stations that may be located far away from a recipient’s location. Therefore, in this paper, we focus on presenting a low-cost weather station that relies on an artificial intelligence (AI) algorithm that can be distributed across a WTEG area with minimal cost. The proposed study measures multiple weather parameters, such as wind direction, wind velocity (WV), temperature, pressure, mean sea level, and relative humidity to provide current measurements to recipients and AI-based forecasts. In addition, the proposed study consists of several heterogeneous nodes and a controller for each station in a target area. The collected data can be transmitted through Bluetooth low energy (BLE). The experimental results reveal that the proposed study matches the standard of the National Meteorological Center (NMC), with a nowcast measurement of 95% accuracy for WV and 92% for wind direction (WD).
The performance of speaker recognition systems is very well on the datasets without noise and mismatch. However, the performance gets degraded with the environmental noises, channel variation, physical and behavioral changes in speaker. The types of Speaker related feature play crucial role in improving the performance of speaker recognition systems. Gammatone Frequency Cepstral Coefficient (GFCC) features has been widely used to develop robust speaker recognition systems with the conventional machine learning, it achieved better performance compared to Mel Frequency Cepstral Coefficient (MFCC) features in the noisy condition. Recently, deep learning models showed better performance in the speaker recognition compared to conventional machine learning. Most of the previous deep learning-based speaker recognition models has used Mel Spectrogram and similar inputs rather than a handcrafted features like MFCC and GFCC features. However, the performance of the Mel Spectrogram features gets degraded in the high noise ratio and mismatch in the utterances. Similar to Mel Spectrogram, Cochleogram is another important feature for deep learning speaker recognition models. Like GFCC features, Cochleogram represents utterances in Equal Rectangular Band (ERB) scale which is important in noisy condition. However, none of the studies have conducted analysis for noise robustness of Cochleogram and Mel Spectrogram in speaker recognition. In addition, only limited studies have used Cochleogram to develop speech-based models in noisy and mismatch condition using deep learning. In this study, analysis of noise robustness of Cochleogram and Mel Spectrogram features in speaker recognition using deep learning model is conducted at the Signal to Noise Ratio (SNR) level from −5 dB to 20 dB. Experiments are conducted on the VoxCeleb1 and Noise added VoxCeleb1 dataset by using basic 2DCNN, ResNet-50, VGG-16, ECAPA-TDNN and TitaNet Models architectures. The Speaker identification and verification performance of both Cochleogram and Mel Spectrogram is evaluated. The results show that Cochleogram have better performance than Mel Spectrogram in both speaker identification and verification at the noisy and mismatch condition.
Fresh dates have a limited shelf life and are susceptible to spoilage, which can lead to economic losses for producers and suppliers. The problem of accurate shelf life estimation for fresh dates is essential for various stakeholders involved in the production, supply, and consumption of dates. Modified atmosphere packaging (MAP) is one of the essential methods that improves the quality and increases the shelf life of fresh dates by reducing the rate of ripening. Therefore, this study aims to apply fast and cost-effective non-destructive techniques based on machine learning (ML) to predict and estimate the shelf life of stored fresh date fruits under different conditions. Predicting and estimating the shelf life of stored date fruits is essential for scheduling them for consumption at the right time in the supply chain to benefit from the nutritional advantages of fresh dates. The study observed the physicochemical attributes of fresh date fruits, including moisture content, total soluble solids, sugar content, tannin content, pH, and firmness, during storage in a vacuum and MAP at 5 and 24 ∘C every 7 days to determine the shelf life using a non-destructive approach. TinyML-compatible regression models were employed to predict the stages of fruit development during the storage period. The decrease in the shelf life of the fruits begins when they transition from the Khalal stage to the Rutab stage, and the shelf life ends when they start to spoil or ripen to the Tamr stage. Low-cost Visible–Near–Infrared (VisNIR) spectral sensors (AS7265x—multi-spectral) were used to capture the internal physicochemical attributes of the fresh fruit. Regression models were employed for shelf life estimation. The findings indicated that vacuum and modified atmosphere packaging with 20% CO2 and N balance efficiently increased the shelf life of the stored fresh fruit to 53 days and 44 days, respectively, when maintained at 5 ∘C. However, the shelf life decreased to 44 and 23 days when the vacuum and modified atmosphere packaging with 20% CO2 and N balance were maintained at room temperature (24 ∘C). Edge Impulse supports the training and deployment of models on low-cost microcontrollers, which can be used to predict real-time estimations of the shelf life of fresh dates using TinyML sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.