Introduction: Simultaneous exposure to noise and dust may have detrimental health effects. This study was conducted to determine the effect of exposure to noise and dust on oxidative stress. Methods: In this cross-sectional study, 82 employees of two livestock and poultry feed factories in Golestan Province, Iran, were selected as the exposed group and 82 office workers were selected as the control group. Occupational noise and dust exposure were measured using a dosimeter, sampling pump, and vinyl chloride filter. Oxidative stress was determined by measuring the levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in blood samples. T-tests, one-way analysis of variance, and multivariate linear regression were used to analyze the data. Results: The levels of MDA and SOD in the exposed group were significantly higher and lower than the control group ( p < 0.001), respectively. The results showed the subgroup with both over the threshold dust and noise exposure had the highest MDA levels. The SOD level among those exposed to noise more than the recommended level, in the subgroup with more dust exposure, was significantly less than the subgroup with low noise exposure ( p = 0.017). Conclusion: Noise and dust exposure probably increase the level of oxidative stress by increasing the level of lipid peroxidation (MDA) and reducing the level of antioxidant enzymes (SOD).
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufacturing plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l(-1), and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 3,000 mg l(-1) and in the batch mode was 2,400 mg l(-1). The attached biomass concentration in the HBR reactor (2.25 g l(-1) fireclay) in the continuous mode was 1,500 mg l(-1) and in the batch mode was 980 mg l(-1). Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.
Background: Contamination of water resources with nitrate is a serious environmental problem in many regions of the world. In addition, this problem has been observed in some regions of Iran. As Nitrate is threatening for human health and environment, it must be decreased to standard levels in drinking water. Objectives: The purpose of this research was to model the nitrate removal from water by nano-scaled zero-valent iron (nZVI) using response surface methodology and to investigate the effects of the nZVI dose, nitrate concentration, contact time, and ionic strength on removal efficiency. Materials and Methods: Box-Behnken design was used. Response surface methodology was used for modeling nitrate removal. All experiments were conducted according to standard methods. Important assessed parameters included nZVI dose (0.5-2 g/L), nitrate concentration (50-150 mg/L), contact time (15-60 minutes), and ionic strength (1000-5000 μmho/cm). Results: Results indicated that there was a direct association between nitrate removal efficiency and time and nZVI dosage. Therefore, increasing of the contact time or nZVI dose would increase nitrate removal. On the other hand, the nitrate removal was decreased when ionic strength and initial concentration were increased. The analysis of variance revealed that the proposed regression model could be appropriately used to design experiments. The model correlation coefficient was 0.9992 and the adjusted value was 0.9982. Conclusions: Response surface methodology and Box-Behnken design were powerful statistical tools for navigating nitrate reduction process. The results showed that a high percentage of nitrate were reduced by nZVI and this method might be efficiently used for nitrate removal from water.
Introduction: Global warming and the need to reduce greenhouse gas emissions from various emission sectors are not hidden from anyone. The aim of this study was to determine Carbon dioxide (CO2)capture from combustion gases of methane for cultivation of microalgae spirulina platensis. Materials and methods: Microalgae culture medium was added in two photobioreactor. Air and combustion gas was injected into control and test reactors respectively. Artificial light with 10 Klux intensity was used and operated in continuous and intermittent (14 h ON and 8 h OFF) modes. Inlet concentration of carbon dioxide in to the test photobiorector was set in the range of 2000 to 6000 ppm and was measured in the inlet and outlet of photo-bioreactor by ND-IR CO2 analyzer. Results: In the control photo-bioreactor, the average removal of CO2 from the air was 42%. In the test reactor with an inlet CO2 concentration of 4100 ppm, the average removal of CO2 from the combustion gas was 23%. After 9 days of cultivation, the amount of carbon dioxide stabilized by microalgae was 0.528 and 1.14 g/L (dry weight) in the control and experimental photo- bioreactors respectively. The CO2 bio-fixation rate was in the range of 2.2% and 4.0% at different runs. After 9.0 days of cultivation concentration of microalgae was 0.25 and 1.0 g/L in the control and test reactors respectively. Algae productivity with intermittent light was 35% less than continuous light exposure. Conclusion: It is possible to use CO2 capture from combustion gases of commercial heater for cultivation of microalgae spirulina.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.