Selection of an appropriate place for biomass power plant is very essential, balance of transported amount and collected amount should be in a balance. Otherwise, transportation cost is going to cause huge loss of profits. According to references that referred in literature review, to determine appropriate places for biomass power plant, facility location problem have applied. This research addresses Facility Location Problem and then Mixed Integer Programming Model is developed which maximizes the potential value of facilities is going to be built. That model is used for solving different size of problems such as number of cities that is going to be selected and transportation budget. After 21 different size of the model is solved, the solution is compared and ideal solution trying to be elected. Therefore, the case of electing 3 cities or 5 cities should have 3 billion budget and 7 city electing should have 5 billion budget with respect to regression trend line. For this purpose, the logistics on Turkey, biomass potential and cost in mind, the most appropriate location and the type of bioenergy plants should be selected in this study.
Let α be a prime Hurwitz integer. Hα, which is the set of residual class with respect to related modulo function in the rings of Hurwitz integers, is a subset of H, which is the set of all Hurwitz integers. We consider left congruent modulo α and, the domain of related modulo function in this study is ZN(α), which is residual class ring of ordinary integers with N(α) elements, which is the norm of prime Hurwitz integer α. In this study, we present an algebraic construction technique, which is a modulo function formed depending on two modulo operations, for codes over Hurwitz integers. Thereby, we obtain the residue class rings of Hurwitz integers with N(α) size. In addition, we present some results for mathematical notations used in two modulo functions, and for the algebraic construction technique formed depending upon two modulo functions. Moreover, we presented graphs obtained by graph layout methods, such as spring, high-dimensional, and spiral embedding, for the set of the residual class obtained with respect to the related modulo function in the rings of Hurwitz integers.
The residue class set of a Lipschitz integer is constructed by modulo function with primitive Lipschitz integer whose norm is a prime integer, i.e. prime Lipschitz integer. In this study, we consider primitive Lipschitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Lipschitz integer is less than the norm of the primitive Lipschitz integer used to construct the residue class set of the Lipschitz integer, then, the Euclid division algorithm works for this primitive Lipschitz integer. The Euclid division algorithm always works for prime Lipschitz integers. In other words, the prime Lipschitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Lipschitz residue class set that lies on primitive Lipschitz integers whose norm is not a prime integer. In this study, we solve this problem by defining Lipschitz integers that have the ”division with small remainder” property, namely, encoder Lipschitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Also, we investigate the performances of Lipschitz signal constellations (the left residue class set) obtained by modulo function with Lipschitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by agency of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).
The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).
The residue class set of a Hurwitz integer is constructed by modulo function with primitive Hurwitz integer whose norm is a prime integer, i.e. prime Hurwitz integer. In this study, we consider primitive Hurwitz integer whose norm is both a prime integer and not a prime integer. If the norm of each element of the residue class set of a Hurwitz integer is less than the norm of the primitive Hurwitz integer used to construct the residue class set of the Hurwitz integer, then, the Euclid division algorithm works for this primitive Hurwitz integer. The Euclid division algorithm always works for prime Hurwitz integers. In other words, the prime Hurwitz integers and halves-integer primitive Hurwitz integers have the ”division with small remainder” property. However, this property is ignored in some studies that have a constructed Hurwitz residue class set that lies on primitive Hurwitz integers that their norms are not a prime integer and their components are in integers set. In this study, we solve this problem by defining Hurwitz integers that have the ”division with small remainder” property, namely, encoder Hurwitz integers set. Therefore, we can define appropriate metrics for codes over Lipschitz integers. Especially, Euclidean metric. Also, we investigate the performances of Hurwitz signal constellations (the left residue class set) obtained by modulo function with Hurwitz integers, which have the ”division with small remainder” property, over the additive white Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average energy, and signal-to-noise ratio (SNR).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.