In this paper, we investigate the relative performance of Value-at-Risk (VaR) models with the daily stock market returns of nine different emerging markets. In addition to well-known modeling approaches, such as variance-covariance method and historical simulation, we study the extreme value theory (EVT) to generate VaR estimates and provide the tail forecasts of daily returns at the 0.999 percentile along with 95% confidence intervals for stress testing purposes. The results indicate that EVT-based VaR estimates are more accurate at higher quantiles. According to estimated Generalized Pareto Distribution parameters, certain moments of the return distributions do not exist in some countries. In addition, the daily return distributions have different moment properties at their right and left tails. Therefore, risk and reward are not equally likely in these economies. © 2004 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved
Montréal Novembre 1998 CIRANOLe CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d=une subvention d=infrastructure du ministère de l=Industrie, du Commerce, de la Science et de la Technologie, de même que des subventions et mandats obtenus par ses équipes de recherche. La Série Scientifique est la réalisation d=une des missions que s=est données le CIRANO, soit de développer l=analyse scientifique des organisations et des comportements stratégiques. Reproduction partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, provided that full credit, including © notice, is given to the source. CIRANO is a private non-profit organization incorporated under the ISSN 1198-8177Ce document est publié dans l=intention de rendre accessibles les résultats préliminaires de la recherche effectuée au CIRANO, afin de susciter des échanges et des suggestions. Black-Scholes nous permet de prévoir plus précisément les prix d'options. Au lieu de construire notre réseau d'apprentissage en entrant directement le rapport prix de l'actif sous-jacent / prix d'exercice et l'échéance dans la fonction de prix, nous décomposons cette dernière en deux parties, l'une contrôlée par le rapport prix de l'actif sous-jacent / prix d'exercice l'autre par une fonction de l'échéance. Les résultats indiquent que la forme fondée sur l'homogénéité permet toujours de réduire l'erreur quadratique moyenne de prévision hors échantillon par rapport à un réseau de neurones n'utilisant pas l'homogénéité. Les deux réseaux, avec ou sans l'homogénéité, produisent des erreurs de couverture comparables qui sont petites par rapport à la performance de couverture du modèle de Black-Scholes. Toutefois, le modèle fondé sur l'homogénéité produit une performance de couverture plus stable. We estimate a generalized option pricing formula that has a functional
In this paper we propose a new approach to estimating systematic risk (the beta of an asset). The proposed method is based on a wavelet multiscaling approach that decomposes a given time series on a scale-by-scale basis. The empirical results from different economies show that the relationship between the return of a portfolio and its beta becomes stronger as the wavelet scale increases. Therefore, the predictions of the CAPM model should be investigated considering the multiscale nature of risk and return. © 2004 Elsevier Ltd. All rights reserved
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.