COVID -19 is an acute infectious disease caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Human surfactant protein D (SP-D) is known to interact with spike protein of SARS-CoV, but its immune-surveillance against SARS-CoV-2 is not known.The study aimed to examine the potential of a recombinant fragment of human SP-D (rfhSP-D) as an inhibitor of replication and infection of SARS-CoV-2. The interaction of rfhSP-D with spike protein of SARS-CoV-2 and hACE-2 receptor was predicted via docking analysis.The inhibition of interaction between spike protein and ACE-2 by rfhSP-D was confirmed using direct and indirect ELISA. The effect of rfhSP-D on replication and infectivity of SARS-CoV-2 from clinical samples was studied by measuring the expression of RdRp gene of the virus using qPCR. In-silico interaction studies indicated that three amino acid residues in the RBD of spike of SARS-CoV-2 were commonly involved in interacting with rfhSP-D and ACE-2. Studies using clinical samples of SARS-CoV-2 positive cases (asymptomatic, n=7 and symptomatic, n=8 and negative controls n=15) demonstrated that treatment with 1.67 µM rfhSP-D inhibited viral replication by ~5.5 fold and was more efficient than Remdesivir (100 µM). Approximately, a 2-fold reduction in viral infectivity was also observed after treatment with 1.67 µM rfhSP-D. These results conclusively demonstrate that the calcium independent rfhSP-D mediated inhibition of binding between the receptor binding domain of the S1 subunit of the SARS-CoV-2 spike protein and human ACE-2, its host cell receptor, and a significant reduction in SARS-CoV-2 infection and replication invitro.
Objective: Management of aging is one of the most actively researched areas in biology. Ayurvedic preparations such as Abhrak Bhasma (AB) have been used for improving longevity and regenerative therapy as well as in treating various ailments. Modes of action of such Ayurvedic preparations are poorly understood at molecular level. Current investigation tests the efficacy of AB in modulating various parameters linked to oxidative stress.Methods: Drosophila melanogaster was used as a model system to test the efficacy of AB in inducing antioxidant machinery. Drosophila flies were fed on diet supplemented with AB at larval and adult stages. Subsequently, various parameters, catalytic as well as non-catalytic, related to antioxidant machinery were analyzed.Results: AB has been found to modulate the activity of superoxide dismutase and catalase enzymes as well as the total reduced glutathione (GSH) content. Larvae and adults feeding on diet supplemented with AB exhibit significantly lower levels of total GSH content (decrease of about 40-70% for larvae, while 31-36% for adults) and without any conclusive effect on GSH:oxidized glutathione ratio, free radical scavenging capacity, and extent of lipid peroxidation. These larvae and adults fed on diet supplemented with AB also exhibited an increase in the level of transcription of cap "n" collar C, heat shock protein 70, and catalase genes (≥1.5 fold, except in few cases). Conclusion:Overall, AB alters various parameters linked to antioxidant machinery in D. melanogaster. The induced components may provide protection to the organism during stressful conditions.
No abstract
Cell surface proteins carrying N-glycans play important roles in inter- and intracellular processes including cell adhesion, development, and cellular recognition. Dysregulation of the glycosylation machinery has been implicated in various diseases, and investigation of global differential cell surface proteome effects due to the loss of N-glycosylation will provide comprehensive insights into their pathogenesis. Cell surface proteins isolated from Parent Pro–5 CHO cells (W5 cells), two CHO mutants with loss of N-glycosylation function derived from Pro–5 CHO (Lec1 and Lec4 cells), were subjected to proteome analysis via high-resolution LCMS. We identified 44 and 43 differentially expressed membrane proteins in Lec1 and Lec4 cells, respectively, as compared to W5 cells. The defective N-glycosylation mutants showed increased abundance of integrin subunits in Lec1 and Lec4 cells at the cell surface. We also found significantly reduced levels of IGF-1R (Insulin like growth factor-1 receptor); a receptor tyrosine kinase; and the GTPase activating protein IQGAP1 (IQ motif-containing GTPase activating protein), a highly conserved cytoplasmic scaffold protein) in Lec1 and Lec4 cells. In silico docking studies showed that the IQ domain of IQGAP1 interacts with the kinase domain of IGF-1R. The integrin signaling and insulin growth factor receptor signaling were also enriched according to GSEA analysis and pathway analysis of differentially expressed proteins. Significant reductions of phosphorylation of ERK1 and ERK2 in Lec1 and Lec4 cells were observed upon IGF-1R ligand (IGF-1 LR3) stimulation. IGF-1 LR3, known as Long arginine3-IGF-1, is a synthetic protein and lengthened analog of insulin-like growth factor 1. The work suggests a novel mechanism for the activation of IGF-1 dependent ERK signaling in CHO cells, wherein IQGAP1 plausibly functions as an IGF-1R-associated scaffold protein. Appropriate glycosylation by the enzymes MGAT1 and MGAT5 is thus essential for processing of cell surface receptor IGF-1R, a potential binding partner in IQGAP1 and ERK signaling, the integral components of the IGF pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.