TNIP1 protein is increasingly being recognized as a key repressor of inflammatory signaling and a potential factor in multiple autoimmune diseases. In addition to earlier foundational reports of TNIP1 SNPs in human autoimmune diseases and TNIP1 protein-protein interaction with receptor regulating proteins, more recent studies have identified new potential interaction partners and signaling pathways likely modulated by TNIP1. Subdomains within the TNIP1 protein as well as how they interact with ubiquitin have not only been mapped but inflammatory cell- and tissue-specific consequences subsequent to their defective function are being recognized and related to human disease states such as lupus, scleroderma, and psoriasis. In this review, we emphasize receptor signaling complexes and regulation of cytoplasmic signaling steps downstream of TLR given their association with some of the same autoimmune diseases where TNIP1 has been implicated. TNIP1 dysfunction or deficiency may predispose healthy cells to the inflammatory response to otherwise innocuous TLR ligand exposure. The recognition of the anti-inflammatory roles of TNIP1 and improved integrated understanding of its physical and functional association with other signaling pathway proteins may position TNIP1 as a candidate target for the design and/or testing of next-generation anti-inflammatory therapeutics.
Intrinsically disordered proteins (IDPs) move through an ensemble of conformations which allows multitudinous roles within a cell. Keratinocytes, the predominant cell type in mammalian epidermis, have had only a few individual proteins assessed for intrinsic disorder and its possible contribution to liquid–liquid phase separation (LLPS), especially in regard to what functions or structures these proteins provide. We took a holistic approach to keratinocyte IDPs starting with enrichment via the isolation of thermostable proteins. The keratinocyte protein involucrin, known for its resistance to heat denaturation, served as a marker. It and other thermostable proteins were identified by liquid chromatography tandem mass spectrometry and subjected to extensive bioinformatic analysis covering gene ontology, intrinsic disorder, and potential for LLPS. Numerous proteins unique to keratinocytes and other proteins with shared expression in multiple cell types were identified to have IDP traits (e.g., compositional bias, nucleic acid binding, and repeat motifs). Among keratinocyte-specific proteins, many that co-assemble with involucrin into the cell-specific structure known as the cornified envelope scored highly for intrinsic disorder and potential for LLPS. This suggests intrinsic disorder and LLPS are previously unrecognized traits for assembly of the cornified envelope, echoing the contribution of intrinsic disorder and LLPS to more widely encountered features such as stress granules and PML bodies.
Epidermal keratinocyte proteins include many with an eccentric amino acid content (compositional bias), atypical ultrastructural fate (built-in protease sensitivity), or assembly visible at the light microscope level (cytoplasmic granules). However, when considered through the looking glass of intrinsic disorder (ID), these apparent oddities seem quite expected. Keratinocyte proteins with highly repetitive motifs are of low complexity but high adaptation, providing polymers (e.g., profilaggrin) for proteolysis into bioactive derivatives, or monomers (e.g., loricrin) repeatedly cross-linked to self and other proteins to shield underlying tissue. Keratohyalin granules developing from liquid–liquid phase separation (LLPS) show that unique biomolecular condensates (BMC) and proteinaceous membraneless organelles (PMLO) occur in these highly customized cells. We conducted bioinformatic and in silico assessments of representative keratinocyte differentiation-dependent proteins. This was conducted in the context of them having demonstrated potential ID with the prospect of that characteristic driving formation of distinctive keratinocyte structures. Intriguingly, while ID is characteristic of many of these proteins, it does not appear to guarantee LLPS, nor is it required for incorporation into certain keratinocyte protein condensates. Further examination of keratinocyte-specific proteins will provide variations in the theme of PMLO, possibly recognizing new BMC for advancements in understanding intrinsically disordered proteins as reflected by keratinocyte biology.
TNFAIP3 interacting protein 1 (TNIP1) interacts with numerous non-related cellular, viral, and bacterial proteins. TNIP1 is also linked with multiple chronic inflammatory disorders on the gene and protein levels, through numerous single-nucleotide polymorphisms and reduced protein amounts. Despite the importance of TNIP1 function, there is limited investigation as to how its conformation may impact its apparent multiple roles. Hub proteins like TNIP1 are often intrinsically disordered proteins. Our initial in silico assessments suggested TNIP1 is natively unstructured, featuring numerous potentials intrinsically disordered regions, including the ABIN homology domain 1-ubiquitin binding domain in ABIN proteins and NEMO (AHD1-UBAN) domain associated with its anti-inflammatory function. Using multiple biophysical approaches, we demonstrate the structural flexibility of full-length TNIP1 and the AHD1-UBAN domain. We present evidence the AHD1-UBAN domain exists primarily as a pre-molten globule with limited secondary structure in solution. Data presented here suggest the previously described coiled-coil conformation of the crystallized UBAN-only region may represent just one of possibly multiple states for the AHD1-UBAN domain in solution. These data also characterize the AHD1-UBAN domain in solution as mostly monomeric with potential to undergo oligomerization under specific environmental conditions (e.g., binding partner availability, pH-dependence). This proposed intrinsic disorder across TNIP1 and within the AHD1-UBAN region is likely to impact TNIP1 function and interaction with its multiple partners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.