The paper considers the Popularity Adjusted Block model (PABM) introduced by Sengupta and Chen (Journal of the Royal Statistical Society Series B, 2018, 80, 365–386). We argue that the main appeal of the PABM is the flexibility of the spectral properties of the graph which makes the PABM an attractive choice for modelling networks that appear in biological sciences. We expand the theory of PABM to the case of an arbitrary number of communities which possibly grows with a number of nodes in the network and is not assumed to be known. We produce estimators of the probability matrix and of the community structure and, in addition, provide non‐asymptotic upper bounds for the estimation and the clustering errors. We use the Sparse Subspace Clustering (SSC) approach for partitioning the network into communities, the approach that, to the best of our knowledge, has not been used for the clustering network data. The theory is supplemented by a simulation study. In addition, we show advantages of the PABM for modelling a butterfly similarity network and a human brain functional network.
The paper considers the Popularity Adjusted Block model (PABM) introduced by Sengupta and Chen (2018). We argue that the main appeal of the PABM is the flexibility of the spectral properties of the graph which makes the PABM an attractive choice for modeling networks that appear in biological sciences. We expand the theory of PABM to the case of an arbitrary number of communities which possibly grows with a number of nodes in the network and is not assumed to be known. We produce estimators of the probability matrix and the community structure and provide non-asymptotic upper bounds for the estimation and the clustering errors. We use the Sparse Subspace Clustering (SSC) approach to partition the network into communities, the approach that, to the best of our knowledge, has not been used for clustering network data. The theory is supplemented by a simulation study. In addition, we show advantages of the PABM for modeling a butterfly similarity network and a human brain functional network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.