This paper examines the performance of a naïve equally weighted buy-and-hold portfolio and optimization-based commodity futures portfolios for various lookback and holding periods using data from January 1986 to December 2018. The application of Monte Carlo simulation-based mean-variance and conditional value-at-risk optimization techniques are used to construct the robust commodity futures portfolios. This paper documents the benefits of applying a sophisticated, robust optimization technique to construct commodity futures portfolios. We find that a 12-month lookback period contains the most useful information in constructing optimization-based portfolios, and a 1-month holding period yields the highest returns among all the holding periods examined in the paper. We also find that an optimized conditional value-at-risk portfolio using a 12-month lookback period outperforms an optimized mean-variance portfolio using the same lookback period. Our findings highlight the advantages of using robust optimization for portfolio formation in the presence of return uncertainty in the commodity futures markets. The results also highlight the practical importance of choosing the appropriate lookback and holding period when using robust optimization in the commodity portfolio formation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.