In water scarce countries such as Eritrea, maintaining brewery industry remain ever challenging task. Currently, Asmara breweries is the only beer producing factory consuming 8.46 L of water per every L of beer produced which is notably higher than Brewer’s Association (BA) benchmark and consequently generates 7.53 L of wastewater/L of beer. Bottle cleaning and brewery activities ascertain ample effluent bases. Wastewater from bottle cleaning (BCWW), brewery (BWW) and mixed (MWW) have attributed a wide spectrum of 3500-160000 mg/L of COD and 327-26667 mg/L of BOD<sub>5</sub>, which are significantly overtops other reported brewery effluents. Physicochemical treatments including coagulation with conventional (alum) and natural (MO seed) flocculants have tested to remove higher COD and BOD<sub>5 </sub>concentrations of brewery effluents. Optimal coagulant dosage determined by accounting turbidity as a key performance indicator. Alum treatment of BCWW and MO seed flocculation of MWW have resulted in lower turbidity levels of 0.49 and 6.17 NTU at 60 mg/L of dosages respectively. The optimal quantities of 92.2 % and 86.6% (by weight) of water recovered from alum treatment of BCWW and MO seed coagulation of MWW respectively. Higher sludge volumes recorded as a major disadvantage in alum coagulation whereas natural coagulant, MO seed manifested competitive results in removal of COD, BOD<sub>5</sub>, Chlorine, Nitrogen, Sulphate, Sodium, TDS and TSS along with P<sup>H</sup> stabilization. In addition, 97.2% of influent turbidity removed through MO seed coagulation treatment, an equipollent to alum despite of four fold increment in potassium levels.
Polypropylene plastics are used extensively in packaging and food services for short usage, poses enormous disposal problem and contributing to over 45 % of globally generated plastic waste. Accordingly, the present work is focused on converting waste polypropylene(WPP) disposable cups in to liquid fuels by employing thermal and catalytic pyrolysis processes. Characterization of WPP disposable cups were performed through proximate and ultimate analyses followed by TGA and found that 86% of its mass degrades in a temperature range of 430 – 603 oC. Effect of temperature in the range of 500 – 650 oC on liquid fuel production at a constant heating rate of 15 oC/min were noted in thermal pyrolysis, an optimum and stable liquid fraction of 76 % with a reaction time of 30 min was recorded at 500 oC. For studies on catalytic pyrolysis, activated carbon (AC) was applied from 470 to 530 oC at variable Feed to Catalyst (F/C) ratio of 1- 4, an optimum liquid yield of 74 % was obtained with a residence time of 35 min at 510 oC and F/C of 3:1. Thermo-physical properties of optimal liquid products were comparable with conventional fossil fuels. XRD and SEM analysis of AC catalyst were showed the presence of carbon at 24o and 42o of 2θ-angle with an apparel pore size of 2 µm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.