Gastrointestinal stromal tumors (GISTs) are composed of various molecular subtypes, with differing prognostic and predictive relevance. Previously, tumors lacking mutations in the KIT and PDGFRA genes have been designated as 'wild-type' GISTs; however, they represent a heterogeneous group currently undergoing further subclassification. Primary and secondary resistance to imatinib poses a significant clinical challenge, therefore ongoing research is trying to evaluate mechanisms to overcome resistance. Thorough understanding of the prognostic and predictive relevance of different genetic subtypes of GIST can guide clinical decision-making both in the adjuvant and the metastatic setting. Further work is required to identify tailored therapies for specific subgroups of GISTs wild-type for KIT and PDGFRA mutations and to identify predictive factors of resistance to currently approved systemic therapies.
BackgroundSoft tissue sarcomas (STS) are rare tumours arising in mesenchymal tissues. Gastrointestinal stromal tumour (GIST) is the commonest STS and arises within the wall of the gastrointestinal (GI) tract. While most GISTs occur in the stomach they do occur in all parts of the GI tract. As with other STS, it is important that GISTs are managed by expert teams, to ensure consistent and optimal treatment, as well as recruitment to clinical trials, and the ongoing accumulation of further knowledge of the disease. The development of appropriate guidance, by an experienced panel referring to the evidence available, is therefore a useful foundation on which to build progress in the field.MethodologyBritish Sarcoma Group guidelines for the management of GIST were initially developed by a panel of physicians experienced in the management of GIST. This current version has been updated and amended with reference to other European and US guidance. We have received input from representatives of all diagnostic and treatment disciplines as well as patient representatives. Levels of evidence and strength of recommendation gradings are those used by ESMO adapted from those published by the Infectious Disease Society of America.ConclusionsThe guidelines cover aetiology, genetics and underlying molecular mechanisms, diagnosis and initial investigations, staging and risk stratification, surgery, neoadjuvant and adjuvant therapy, the management of advanced disease and follow-up. The importance of mutational analysis in guiding treatment is highlighted, since this can indicate the most effective treatment and avoid administration of ineffective drugs, emphasising the need for management in specialist centres.
Background:Pyridoxine is frequently used to treat capecitabine-induced hand–foot syndrome (HFS), although the evidence of benefit is lacking. We performed a randomised placebo-controlled trial to determine whether pyridoxine could avoid the need for capecitabine dose modifications and improve outcomes.Methods:A total of 106 patients planned for palliative single-agent capecitabine (53 in each arm, 65%/ 35% colorectal/breast cancer) were randomised to receive either concomitant pyridoxine (50 mg po) or matching placebo three times daily.Results:Compared with placebo, pyridoxine use was associated with an increased rate of avoiding capecitabine dose modifications (37% vs 23%, relative risk 0.59, 95% CI 0.29, 1.20, P=0.15) and fewer grade 3/4 HFS-related adverse events (9% vs 17%, odds ratio 0.51, 95% CI 0.15–1.6, P=0.26). Use of pyridoxine did not improve response rate or progression-free survival.Conclusion:Pyridoxine may reduce the need for capecitabine dose modifications and the incidence of severe HFS, but does not impact on antitumour effect.
Gemcitabine and treosulfan are DNA-damaging agents. Preclinical studies suggest that synergism exists when melanoma cells are exposed to both drugs concurrently. We conducted a phase I trial in advanced melanoma patients to determine the optimal dose of gemcitabine to be combined with treosulfan. Cohorts of three patients received increasing doses of gemcitabine, commencing at 0.5 g m À2 , followed by a fixed dose of 5.0 g m À2 treosulfan on day one of a 21-day cycle. Patients alternately received a first cycle of single-agent gemcitabine or treosulfan before subsequent cycles of both drugs. Peripheral blood lymphocytes were collected in cycles 1 and 2 at various time points until 48 h post-treatment. The single-cell gel electrophoresis (Comet) assay was used to measure chemotherapy-induced DNA damage. A total of 27 patients were enrolled, no objective responses were observed, but two uveal melanoma patients had minor responses. Dose-limiting myelosuppression was reached at 3.0 g m À2 gemcitabine. DNA single-strand breaks were detected 4 h post-gemcitabine, repaired by 24 h. DNA interstrand crosslinks were detected 4 h post-treosulfan, fully removed by 48 h. Following combination chemotherapy, treosulfan-induced DNA crosslinks persisted, still being detectable 48 h post-treatment, supporting the hypothesis that gemcitabine potentiates treosulfan-induced cytotoxicity. The recommended regimen for further study is 2.5 g m À2 gemcitabine combined with 5.0 g m À2 treosulfan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.