Sentiment analysis is the process of computationally recognizing and classifying the attitudes conveyed in each text towards a particular topic, product, etc. which is either positive or negative. Sentiment analysis is one of the interesting applications of natural language processing (NLP) and which is used to analyze the social media. Text in social media is casual and it can be written either in code-switch or monolingual text. Several researchers have implemented sentiment analysis on monolingual text, though sentiments can be expressed in code-switch text. Sentiment analysis can be applied through deep learning (DL), machine learning (ML), or a Lexicon-based approach. Machine learning (ML) and deep learning (DL) methods are time-consuming, computationally expensive, and need training data for analysis. Lexicon-based method does not require training data and requires less time to find the sentiments in comparison with ML and DL. In this paper, we propose the Lexicon-based approach (NBLex) to analyze the sentiments expressed in Kannada-English code-switch text. This is the first effort that targets to perform sentiment analysis in Kannada-English code-switch text using the Lexicon-based approach. The proposed approach performed with better accuracy of 83.2% and 83% of F1-score.
<span lang="EN-US">Code-switching is a very common occurrence in social media communication, predominantly found in multilingual countries like India. Using more than one language in communication is known as code-switching or code-mixing. Some of the important applications of code-switch are machine translation (MT), shallow parsing, dialog systems, and semantic parsing. Identifying code-switch and monolingual information is useful for better communication in online networking websites. In this paper, we performed a character level n-gram approach to identify monolingual and code-switch information from English-Kannada social media data. We paralleled various machine learning techniques such as naïve Bayes (NB), support vector classifier (SVC), logistic regression (LR) and neural network (NN) on English-Kannada code-switch (EKCS) data. From the proposed approach, it is observed that the character level n-gram approach provides 1.8% to 4.1% of improvement in terms of Accuracy and 1.6% to 3.8% of improvement in F1-score. Also observed that SVC and NN techniques are outperformed in terms of accuracy (97.9%) and F1-score (98%) with character level n-gram.</span>
<span lang="EN-US">Emotion analysis is a process of identifying the human emotions derived from the various data sources. Emotions can be expressed either in monolingual text or code-switch text. Emotion prediction can be performed through machine learning (ML), or deep learning (DL), or lexicon-based approach. ML and DL approaches are computationally expensive and require training data. Whereas, the lexicon-based approach does not require any training data and it takes very less time to predict the emotions in comparison with ML and DL. In this paper, we proposed a lexicon-based method called non-binding lower extremity exoskeleton (NBLex) to predict the emotions associated with Kannada-English code-switch text that no one has addressed till now. We applied the One-vs-Rest approach to generate the scores for lexicon and also to predict the emotions from the code-switch text. The accuracy of the proposed model NBLex (87.9%) is better than naïve bayes (NB) (85.8%) and bidirectional long short-term memory neural network (BiLSTM) (84.7%) and for true positive rate (TPR), the NBLex (50.6%) is better than NB (37.0%) and BiLSTM (42.2%). From our approach, it is observed that a simple additive model (lexicon approach) can also be an alternative model to predict the emotions in code-switch text.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.