Pattern classification is a system for classifying patterns into dissimilar potential categories. The classifier that is used for classification is granular neural network. A granular neural network called granular reflex fuzzy min-max neural network (GrRFMN). GrRFMN uses hyperbox fuzzy set to signify grainy information. Using known data the neural network will be trained, and using this trained neural network data can be classified. Its structural design consists of a spontaneous effect system motivated from human brain to handle group overlies.The GFMN cannot hold data granules of dissimilar sizes professionally. It can be practically done that a convinced quantity of such preprocessing can assist to recover the presentation of a classifier. The GrRFMN is skilled of managing grainy information capably by the training algorithm. The experimental outcomes on valid datasets confirm a good presentation of GRFMN. Experimental results on valid data sets confirm that the GrRFMN can categorize granules of dissimilar granularity further acceptably.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.