The novel coronavirus 2019 (COVID-19) disease is a pandemic which affects thousands of people throughout the world. It has rapidly spread throughout India since the first case in India was reported on 30 January 2020. The official report says that totally 4, 11,773 cases are positive, 2, 28,307 recovered, and the country reported 12,948 deaths as of 21 June 2020. Vaccination is the only way to prevent the spreading of COVID-19 disease. Due to various reasons, there is vaccine hesitancy across many people. Hence, the Indian government has the solution to avoid the spread of the disease by instructing their citizens to maintain social distancing, wearing masks, avoiding crowds, and cleaning your hands. Moreover, lots of poverty cases are reported due to social distancing, and hence, both the center government and the respective state governments decide to issue relief funds to all its citizens. The government is unable to maintain social distancing during the relief schemes as the population is huge and available support staffs are less. In this paper, the proposed algorithm makes use of graph theory to schedule the timing of the relief funds so that with the available support staff, the government would able to implement its relief scheme while maintaining social distancing. Furthermore, we have used LSTM deep learning model to predict the spread rate and analyze the daily positive COVID cases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.