The solar cell properties of crystalline BaSi2 and BaGe2 p–n homojunctions are explored using density functional theory combined with a nonequilibrium Green function method. In particular, the quantitative estimates of solar cell parameters such as photocurrent, open-circuit voltage [Formula: see text], short-circuit current [Formula: see text], and efficiency [Formula: see text] are obtained for LDA and GGA-1/2 functionals. The effect of temperature on solar cell parameters is included through electron–phonon coupling (EPC) using the special thermal displacements method. The magnitudes of [Formula: see text], [Formula: see text], and [Formula: see text] for BaSi2 (BaGe2) at 300 K are found to be 27.35 mA/cm2 (26.1 mA/cm2), 0.84 V (0.78 V), and 18.0% (16.6%), respectively. Our study strongly suggests that the phonon-assisted photon absorption and thereby EPC significantly affect the photocurrent, and its inclusion is necessary for a proper description of various solar cell parameters. The computed solar cell parameters for BaSi2 (BaGe2) p–n homojunctions can be used as benchmark ab-initio quantum mechanical results and can be used in simulations based on continuum models.
The semiconductors AlSb and GaSb have emerged, in recent years, as important candidates for photovoltaic applications due to their strong absorption coefficient and other photovoltaic properties. In this study, AlSb...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.