The emergence of mining complex networks like social media, sensor networks, and the world-wide-web has attracted considerable research interest. In a streaming scenario, the concept to be learned can change over time. However, while there has been some research done for detecting concept drift in traditional data streams, little work has been done on addressing concept drift in data represented as a
graph
. We propose a novel unsupervised concept-drift detection method on graph streams called Discriminative Subgraph-based Drift Detector (DSDD). The methodology starts by discovering discriminative subgraphs for each graph in the stream. We then compute the entropy of the window based on the distribution of discriminative subgraphs with respect to the graphs and then use the direct density-ratio estimation approach for detecting concept drift in the series of entropy values obtained by moving one step forward in the sliding window. The effectiveness of the proposed method is demonstrated through experiments using artificial and real-world datasets and its performance is evaluated by comparing against related baseline methods. Similarly, the usefulness of the proposed concept drift detection approach is studied by incorporating it in a popular graph stream classification algorithm and studying the impact of drift detection in classification accuracy.
Network protocol analyzers such asWireshark are valuable for analyzing network traffic but pose a challenge in that it can be difficult to determine which behaviors are out of the ordinary due to the volume of data that must be analyzed. Network anomaly detection systems can provide vital insights to security analysts to supplement protocol analyzers, but this feedback can be difficult to interpret due to the complexity of the algorithms used and the lack of context to determine the reasoning for which an event was labeled as anomalous. We present an approach for visualizing anomalies using a graph-based anomaly detection methodology that aims to provide visual context to network traffic. We demonstrate the approach using network traffic flows as an approach for aiding in the investigation and triage of anomalous network events. The simplicity of a visual representation supports fast analysis of anomalous traffic to identify true positives from false positives and prevent further potential damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.