Eukaryotic chemoattraction signal transduction pathways, such as those used by Dictyostelium discoideum to move toward cAMP, use a G protein–coupled receptor to activate multiple conserved pathways such as PI3 kinase/Akt/PKB to induce actin polymerization and pseudopod formation at the front of a cell, and PTEN to localize myosin II to the rear of a cell. Relatively little is known about chemorepulsion. We previously found that AprA is a chemorepellent protein secreted by Dictyostelium cells. Here we used 29 cell lines with disruptions of cAMP and/or AprA signal transduction pathway components, and delineated the AprA chemorepulsion pathway. We find that AprA uses a subset of chemoattraction signal transduction pathways including Ras, protein kinase A, target of rapamycin (TOR), phospholipase A, and ERK1, but does not require the PI3 kinase/Akt/PKB and guanylyl cyclase pathways to induce chemorepulsion. Possibly as a result of not using the PI3 kinase/Akt/PKB pathway and guanylyl cyclases, AprA does not induce actin polymerization or increase the pseudopod formation rate, but rather appears to inhibit pseudopod formation at the side of cells closest to the source of AprA.
Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.
Polyphosphate is a linear chain of phosphate residues and is present in organisms ranging from bacteria to humans. Pathogens such as Mycobacterium tuberculosis accumulate polyphosphate, and reduced expression of the polyphosphate kinase that synthesizes polyphosphate decreases their survival. How polyphosphate potentiates pathogenicity is poorly understood. Escherichia coli K-12 do not accumulate detectable levels of extracellular polyphosphate and have poor survival after phagocytosis by Dictyostelium discoideum or human macrophages. In contrast, Mycobacterium smegmatis and Mycobacterium tuberculosis accumulate detectable levels of extracellular polyphosphate, and have relatively better survival after phagocytosis by D. discoideum or macrophages. Adding extracellular polyphosphate increased E. coli survival after phagocytosis by D. discoideum and macrophages. Reducing expression of polyphosphate kinase 1 in M. smegmatis reduced extracellular polyphosphate and reduced survival in D. discoideum and macrophages, and this was reversed by the addition of extracellular polyphosphate. Conversely, treatment of D. discoideum and macrophages with recombinant yeast exopolyphosphatase reduced the survival of phagocytosed M. smegmatis or M. tuberculosis. D. discoideum cells lacking the putative polyphosphate receptor GrlD had reduced sensitivity to polyphosphate and, compared to wild-type cells, showed increased killing of phagocytosed E. coli and M. smegmatis. Polyphosphate inhibited phagosome acidification and lysosome activity in D. discoideum and macrophages and reduced early endosomal markers in macrophages. Together, these results suggest that bacterial polyphosphate potentiates pathogenicity by acting as an extracellular signal that inhibits phagosome maturation.
p97 (VCP) is a homo-hexameric triple-A ATPase that exerts a plethora of cellular processes. Heterozygous missense mutations of p97 cause at least five human neurodegenerative disorders. However, the specific molecular consequences of p97 mutations are hitherto widely unknown. Our in silico structural models of human and Dictyostelium p97 showed that the disease-causing human R93C, R155H, and R155C as well as Dictyostelium R154C, E219K, R154C/E219K p97 mutations constitute variations in surface-exposed locations. In-gel ATPase activity measurements of p97 monomers and hexamers revealed significant mutation- and species-specific differences. While all human p97 mutations led to an increase in ATPase activity, no changes could be detected for the Dictyostelium R154C mutant, which is orthologous to human R155C. The E219K mutation led to an almost complete loss of activity, which was partially recuperated in the R154C/E219K double-mutant indicating p97 inter-domain communication. By means of co-immunoprecipitation experiments we identified an UBX-domain containing Dictyostelium protein as a novel p97 interaction partner. We categorized all UBX-domain containing Dictyostelium proteins and named the interaction partner UBXD9. Pull-down assays and surface plasmon resonance analyses of Dictyostelium UBXD9 or the human orthologue TUG/ASPL/UBXD9 demonstrated direct interactions with p97 as well as species-, mutation- and ATP-dependent differences in the binding affinities. Sucrose density gradient assays revealed that both human and Dictyostelium UBXD9 proteins very efficiently disassembled wild-type, but to a lesser extent mutant p97 hexamers into monomers. Our results are consistent with a scenario in which p97 point mutations lead to differences in enzymatic activities and molecular interactions, which in the long-term result in a late-onset and progressive multisystem disease.
Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideum atg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.