The principal objective of this research work was to investigate the results of impregnating epoxy matrix-glass fibre composite laminates with nanosilica as secondary reinforcement. 0.5, 0.75, 1 and 3 wt% nanosilica was used and thereafter properties of composites were assessed through tensile, three point bending, quasi static indentation tests and dynamic mechanical analysis. Scanning electron microscope examinations were done on fracture surfaces and failure modes were analyzed. The internal failures of the composite due to quasi-static indentation were evaluated through C-Scan. Among samples of different weight fractions, 0.75 wt% nanosilica reinforced composite laminates exhibited substantial increase of 42% in tensile strength and 39.46% in flexural strength. The reduction in glass transition temperature (Tg), increase in storage modulus (E′), loss modulus (E″) and damping factor (tan δ) were also observed. Quasi-static indentation assessments revealed that energy absorption property was enhanced significantly by 53.97%. Hence nanosilica up to 0.75 wt% can be used as a potential candidate for secondary reinforcement in epoxy composite laminates.
In the present study, silicon carbide nanoparticles were incorporated into AZ31B magnesium alloy welded joints using the friction stir welding technique at five different stir zone volume fractions. The volume percentage of nano-SiC was varied from 0–20% in increments of 4%. Initially, the microstructure analyses of the V4, V8, and V12 welded joints were observed to be in good accordance with a homogeneous dispersion of nano SiC particles within the stir zone (SZ). Moreover, the particle’s agglomeration and large cluster size were found in the SZ due to insufficient heat generation of the specimen’s V16 and V20 during friction stir welding (FSW). Furthermore, the tensile and microhardness test was conducted, and the results indicate that the volume fractions increase along with the ultimate tensile strength and average microhardness, which increases up to 12% SiC addition (V12). With this effect, the fracture morphology was examined in the nano-composite joints that revealed a brittle fracture mode, which was observed in specimens V16 and V20, and the remaining was in the ductile fracture mode. From this investigation, a significant enhancement was found in the weld nugget zone that the tensile strength value of the V12 specimen was improved by 21% compared to the welded joint without SiC.
Environment friendly polymer composites made of plant based natural fibers such as bamboo fiber, roselle fiber (RF), aloe vera fiber (AF) oil, or kenaf fiber are cardinal of the current world toward sustainability. They offer lower carbon footprint, higher biodegradability, higher specific strength, higher thermal, and acoustic characteristics. On the other hand, properties of synthetic glass fibers (GFs) such as high specific strength to weight ratio, great resistance during impact, and high durability extend their application perspective for various engineering materials. As such, in the present study, mechanical properties and thermal stability of hybrid laminate comprising of natural fiber (i.e., AF and RF) and synthetic fiber (i.e., GF) fabricated using hand layup process were investigated. Experimental findings reveal that sequencing of the fibers significantly affects properties of the composite. Introducing a layer of AF between RF increased the tensile strength by 30.2% respectively while hybrid laminates composed of three successive layers of RF exhibited 12.6% higher impact strength compared to hybrid laminate composed of AF. Besides, the thermal stability of hybrid laminates was higher (i.e., minimal weight loss of <6.1% when heated up to 800°) compared to neat polymer or laminates with single reinforcement. The enhanced thermal stability, mechanical properties, and tribological properties of the “greener” hybrid laminates can be employed in various structural or lightweight industrial applications.Highlights
Hybridization using natural fibers and synthetic fibers are attempted and investigated.
Fiber sequencing significantly affects mechanical properties of the composite.
Higher thermal stability of hybrid laminates, that is, minimal weight loss of <6.1% when heated up to 800°.
Laminated composed of AF in between RF exhibited lowest frictional coefficient.
“Green” hybrid polymer laminate suitable for various structural and lightweight industrial applications is identified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.