<em>‘Internet of Things (IoT)’</em>emerged as an intelligent collaborative computation and communication between a set of objects capable of providing on-demand services to other objects anytime anywhere. A large-scale deployment of data-driven cloud applications as well as automated physical things such as embed electronics, software, sensors and network connectivity enables a joint ubiquitous and pervasive internet-based computing systems well capable of interacting with each other in an IoT. IoT, a well-known term and a growing trend in IT arena certainly bring a highly connected global network structure providing a lot of beneficial aspects to a user regarding business productivity, lifestyle improvement, government efficiency, etc. It also generates enormous heterogeneous and homogeneous data needed to be analyzed properly to get insight into valuable information. However, adoption of this new reality (i.e., IoT) by integrating it with the internet invites a certain challenges from security and privacy perspective. At present, a much effort has been put towards strengthening the security system in IoT still not yet found optimal solutions towards current security flaws. Therefore, the prime aim of this study is to investigate the qualitative aspects of the conventional security solution approaches in IoT. It also extracts some open research problems that could affect the future research track of IoT arena.
In recent times, humans who have been exposed to influenza A viruses (IAV) may not become hostile. Despite the fact that KLRD1 has been discovered as an influenza susceptibility biomarker, it remains to be seen if pre-exposure host gene expression can predict flu symptoms. In this paper, we enable the examination of flu using deep neural networks from input human gene expression datasets with various subtype viruses. This study enables the utilization of these datasets to forecast the spread of flu and can provide the necessary steps to eradicate the flu. The simulation is conducted to test the efficiency of the model in predicting the spread against various input datasets. The results of the simulation show that the proposed method offers a better prediction ability of 2.98% more than other existing methods in finding the spread of flu.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.