P-glycoprotein (P-gp) is well known for multidrug resistance in drug therapy. Its over-expression results into the increased efflux of therapeutic agents rendering them inefficacious. A clear understanding of P-gp efflux mechanism and substrate/inhibitor interactions during the course of efflux cycle will be crucial for designing effective P-gp inhibitors, and therapeutic agents that are non-substrate to P-gp. In the present work, we have modeled P-gp in three different catalytic states. These models were utilized for elucidation of P-gp translocation mechanism using multi-targeted molecular dynamics (MTMD). The gradual changes occurring in P-gp structure from inward open to outward open conformation were sampled out. A detailed investigation of conformational changes occurring in trans-membrane domains (TMDs) during the course of catalytic cycle was carried out. Movements of each TM helices in response to pronounced twisting and translatory motion of NBDs were measured quantitatively. The role of intracellular coupling helices (ICHs) during the structural transition of P-gp was studied, and observed as vital links for structural transition. A close observation of displacements and conformational changes in the residues lining drug-binding pocket was also carried out. Further, we have analyzed the molecular interactions of P-gp substrates/inhibitors during the P-gp translocation to find out how stable binding interactions of a compound at drug-binding site(s) in open conformation, becomes highly destabilized in closed conformation. The study revealed striking differences between the molecular interactions of substrate and inhibitor; inhibitors showed a tendency to maintain stable binding interactions during the catalytic transition cycle.
P-glycoprotein (P-gp) is a plasma membrane efflux transporter belonging to ATP-binding cassette superfamily, responsible for multidrug resistance in tumor cells. Over-expression of P-gp in cancer cells limits the efficacy of many anticancer drugs. A clear understanding of P-gp substrate binding will be advantageous in early drug discovery process. However, substrate poly-specificity of P-gp is a limiting factor in rational drug design. In this investigation, we report a dynamic trans-membrane model of P-gp that accurately identified the substrate binding residues of known anticancer agents. The study included homology modeling of human P-gp based on the crystal structure of C. elegans P-gp, molecular docking, molecular dynamics analyses and binding free energy calculations. The model was further utilized to speculate substrate propensity of in-house anticancer compounds. The model demonstrated promising results with one anticancer compound (NSC745689). As per our observations, the molecule could be a potential lead for anticancer agents devoid of P-gp mediated multiple drug resistance. The in silico results were further validated experimentally using Caco-2 cell lines studies, where NSC745689 exhibited poor permeability (P app 1.03 ± 0.16 × 10(-6) cm/s) and low efflux ratio of 0.26.
Human paraoxonase 1 (h-PON1) is a serum enzyme that can hydrolyze a variety of substrates. The enzyme exhibits anti-inflammatory, anti-oxidative, anti-atherogenic, anti-diabetic, anti-microbial and organophosphate-hydrolyzing activities. Thus, h-PON1 is a strong candidate for the development of therapeutic intervention against a variety conditions in human. However, the crystal structure of h-PON1 is not solved and the molecular details of how the enzyme hydrolyzes different substrates are not clear yet. Understanding the catalytic mechanism(s) of h-PON1 is important in developing the enzyme for therapeutic use. Literature suggests that R/Q polymorphism at position 192 in h-PON1 dramatically modulates the substrate specificity of the enzyme. In order to understand the role of the amino acid residue at position 192 of h-PON1 in its various hydrolytic activities, site-specific mutagenesis at position 192 was done in this study. The mutant enzymes were produced using Escherichia coli expression system and their hydrolytic activities were compared against a panel of substrates. Molecular dynamics simulation studies were employed on selected recombinant h-PON1 (rh-PON1) mutants to understand the effect of amino acid substitutions at position 192 on the structural features of the active site of the enzyme. Our results suggest that, depending on the type of substrate, presence of a particular amino acid residue at position 192 differentially alters the micro-environment of the active site of the enzyme resulting in the engagement of different subsets of amino acid residues in the binding and the processing of substrates. The result advances our understanding of the catalytic mechanism of h-PON1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.