Clostridium difficile is an important human pathogen and one where the primary cause of disease is due to the transmission of spores. We have investigated the proteins found in the outer coat layers of C. difficile spores of pathogenic strain 630 (CD630). Five coat proteins, CotA, CotB, CotCB, CotD, and CotE, were shown to be expressed on the outer coat layers of the spore. We demonstrate that purified spores carry catalase, peroxiredoxin, and chitinase activity and that this activity correlates with the predicted functions of three spore coat proteins identified here, CotCB, CotD, and CotE. CotCB and CotD are putative manganese catalases, and CotE is a novel bifunctional protein with peroxiredoxin activity at its amino terminus and chitinase activity at its carboxy terminus. These enzymes could play an important role in coat assembly by polymerizing protein monomers in the coat. CotE, in addition to a role in macromolecular degradation, could play an important role in inflammation, and this may be of direct relevance to the development of the gastrointestinal symptoms that accompany C. difficile infection. Although specific enzyme activity has not yet been assigned to the proteins identified here, this work provides the first detailed study of the C. difficile spore coat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.