Stagonospora nodorum blotch (SNB) is an economically important wheat disease caused by the necrotrophic fungus Parastagonospora nodorum. SNB resistance in wheat is controlled by several quantitative trait loci (QTLs). Thus, identifying novel resistance/susceptibility QTLs is crucial for continuous improvement of the SNB resistance. Here, the hard winter wheat association mapping panel (HWWAMP) comprising accessions from breeding programs in the Great Plains region of the US, was evaluated for SNB resistance and necrotrophic effectors (NEs) sensitivity at the seedling stage. A genome-wide association study (GWAS) was performed to identify single‐nucleotide polymorphism (SNP) markers associated with SNB resistance and effectors sensitivity. We found seven significant associations for SNB resistance/susceptibility distributed over chromosomes 1B, 2AL, 2DS, 4AL, 5BL, 6BS, and 7AL. Two new QTLs for SNB resistance/susceptibility at the seedling stage were identified on chromosomes 6BS and 7AL, whereas five QTLs previously reported in diverse germplasms were validated. Allele stacking analysis at seven QTLs explained the additive and complex nature of SNB resistance. We identified accessions (‘Pioneer-2180’ and ‘Shocker’) with favorable alleles at five of the seven identified loci, exhibiting a high level of resistance against SNB. Further, GWAS for sensitivity to NEs uncovered significant associations for SnToxA and SnTox3, co-locating with previously identified host sensitivity genes (Tsn1 and Snn3). Candidate region analysis for SNB resistance revealed 35 genes of putative interest with plant defense response-related functions. The QTLs identified and validated in this study could be easily employed in breeding programs using the associated markers to enhance the SNB resistance in hard winter wheat.
A better understanding of the genetic control of spike and kernel traits that have higher heritability can help in the development of high‐yielding wheat varieties. Here, we identified the marker‐trait associations (MTAs) for various spike‐ and kernel‐related traits in winter wheat (Triticum aestivum L.) through genome‐wide association studies (GWAS). An association mapping panel comprising 297 hard winter wheat accessions from the U.S. Great Plains was evaluated for eight spike‐ and kernel‐related traits in three different environments. A GWAS using 15,590 single‐nucleotide polymorphisms (SNPs) identified a total of 53 MTAs for seven spike‐ and kernel‐related traits, where the highest number of MTAs were identified for spike length (16) followed by the number of spikelets per spike (15) and spikelet density (11). Out of 53 MTAs, 14 were considered to represent stable quantitative trait loci (QTL) as they were identified in multiple environments. Five multi‐trait MTAs were identified for various traits including the number of spikelets per spike (NSPS), spikelet density (SD), kernel width (KW), and kernel area (KA) that could facilitate the pyramiding of yield‐contributing traits. Further, a significant additive effect of accumulated favorable alleles on the phenotype of four spike‐related traits suggested that breeding lines and cultivars with a higher number of favorable alleles could be a valuable resource for breeders to improve yield‐related traits. This study improves the understanding of the genetic basis of yield‐related traits in hard winter wheat and provides reliable molecular markers that will facilitate marker‐assisted selection (MAS) in wheat breeding programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.