BackgroundThe number of older adults participating in yoga has increased dramatically in recent years; yet, the physical demands associated with yoga performance have not been reported. The primary aim of the Yoga Empowers Seniors Study (YESS) was to use biomechanical methods to quantify the physical demands associated with the performance of 7 commonly-practiced standing yoga poses in older adults.Methods20 ambulatory older adults (70.7 + − 3.8 yrs) attended 2 weekly 60-minute Hatha yoga classes for 32 weeks. The lower-extremity net joint moments of force (JMOFs), were obtained during the performance of the following poses: Chair, Wall Plank, Tree, Warrior II, Side Stretch, Crescent, and One-Legged Balance. Repeated-measure ANOVA and Tukey’s post-hoc tests were used to identify differences in JMOFs among the poses. Electromyographic analysis was used to support the JMOF findings.ResultsThere was a significant main effect for pose, at the ankle, knee and hip, in the frontal and sagittal planes (p = 0.00 – 0.03). The Crescent, Chair, Warrior II, and One-legged Balance poses generated the greatest average support moments. Side Stretch generated the greatest average hip extensor and knee flexor JMOFs. Crescent placed the highest demands on the hip flexors and knee extensors. All of the poses produced ankle plantar-flexor JMOFs. In the frontal plane, the Tree generated the greatest average hip and knee abductor JMOFs; whereas Warrior II generated the greatest average hip and knee adductor JMOFs. Warrior II and One-legged Balance induced the largest average ankle evertor and invertor JMOFs, respectively. The electromyographic findings were consistent with the JMOF results.ConclusionsMusculoskeletal demand varied significantly across the different poses. These findings may be used to guide the design of evidence-based yoga interventions that address individual-specific training and rehabilitation goals in seniors.Clinical trial registrationThis study is registered with NIH Clinicaltrials.gov #NCT 01411059
Understanding the physical demands placed upon the musculoskeletal system by individual postures may allow experienced instructors and therapists to develop safe and effective yoga programs which reduce undesirable side effects. Thus, we used biomechanical methods to quantify the lower extremity joint angles, joint moments of force, and muscle activities of 21 Hatha yoga postures, commonly used in senior yoga programs. Twenty older adults, 70.7 years ± 3.8 years, participated in a 32-wk yoga class (2 d/wk) where they learned introductory and intermediate postures (asanas). They then performed the asanas in a motion analysis laboratory. Kinematic, kinetic, and electromyographic data was collected over three seconds while the participants held the poses statically. Profiles illustrating the postures and including the biomechanical data were then generated for each asana. Our findings demonstrated that Hatha yoga postures engendered a range of appreciable joint angles, JMOFs, and muscle activities about the ankle, knee, and hip, and that demands associated with some postures and posture modifications were not always intuitive. They also demonstrated that all of the postures elicited appreciable rectus abdominis activity, which was up to 70% of that induced during walking.
Yoga is considered especially suitable for seniors because poses can be modified to accommodate practitioners' capabilities and limitations. In this study, biomechanical assessments on healthy seniors (n = 20; 70.1 ± 3.8 yr) were used to quantify the physical demands, (net joint moments of force [JMOFs] and muscular activation in the lower extremities) associated with the performance of 3 variations (introductory, intermediate, advanced) of 2 classical Hatha yoga poses – Tree and One-Leg Balance (OLB). ANOVA and Cohen's-d were used to contrast the postural variations statistically. The advanced (single-limb, without additional support) versions were hypothesized to generate the greatest demands, followed by the intermediate (single-limb [Tree] and bilateral-limb [OLB] with support) and introductory (bilateral-limb) versions. Our findings, however, suggest that common, long-held conceptions about pose modifications can be counter-intuitive. There was no difference between the intermediate and advanced Tree variations regarding hip and knee JMOFs in both the sagittal
and frontal planes (P = 0.13–0.98). Similarly, OLB introductory and intermediate variations induced sagittal JMOFs that were in the opposite direction of the classic advanced pose version at the hip and knee (P < .001; d = 0.98–2.36). These biomechanical insights provide evidence that may be used by instructors, clinicians and therapists when selecting pose modifications for their yoga participants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.