Macroplea Samouelle, 1819 is the only known fully aquatic leaf beetle genus with three European species that have earlier been classified by their assumed water salinity preferences. We studied the inter-and intraspecific variation of the specimens living in Northern Europe using both molecular (cytochrome c oxidase subunit I, COI) and morphological evidence. The variation in the COI sequences between M. mutica (Fabricius, 1792) and M. pubipennis (Reuter, 1875) was 8.4-9%, M. mutica and M. appendiculata (Panzer, 1794) 3.9-4.9% and M. appendiculata and M. pubipennis 8.8-9.2%. All three species were sampled together in the Bothnian Sea on the same water plants, showing that neither salinity nor plant species bear a decisive importance in their occurrence in the region. Phylogenetic results suggest the existence of two currently unknown Macroplea species that are evolutionarily close to M. appendiculata. A key to the Nordic species is provided.
Gypsum (CaSO 4 •2H 2 O) amendment is a promising way of decreasing the phosphorus loading of arable lands, and thus preventing aquatic eutrophication. However, in freshwaters with low sulfate concentrations, gypsum-released sulfate may pose a threat to the biota. To assess such risks, we performed a series of sulfate toxicity tests in the laboratory and conducted field surveys. These field surveys were associated with a large-scale pilot exercise involving spreading gypsum on agricultural fields covering 18% of the Savijoki River (Finland) catchment area. The gypsum amendment in such fields resulted in approximately a four-fold increase in the mean sulfate concentration for a 2-month period, and a transient, early peak reaching approximately 220 mg/L. The sulfate concentration gradually decreased almost to the pregypsum level after 3 years. Laboratory experiments with Unio crassus mussels and gypsum-spiked river water showed significant effects on foot movement activity, which was more intense with the highest sulfate concentration (1100 mg/L) than with the control. Survival of the glochidia after 24 and 48 h of exposure was not significantly affected by sulfate concentrations up to 1000 mg/L, nor was the length growth of the moss Fontinalis antipyretica affected. The field studies on benthic algal biomass accrual, mussel and fish density, and Salmo trutta embryo survival did not show gypsum amendment effects. Gypsum treatment did not raise the sulfate concentrations even to a level just close to critical for the biota studied. However, because the effects of sulfate are dependent on both the spatial and the temporal contexts, we advocate water quality and biota monitoring with proper temporal and spatial control in rivers within gypsum treatment areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.