Accurate and automatic registration of multimodal retinal images such as fluorescein angiography (FA) and optical coherence tomography (OCT) enables utilization of supplementary information. FA is a gold standard imaging modality that depicts neurovascular structure of retina and is used for diagnosing neurovascular-related diseases such as diabetic retinopathy (DR). Unlike FA, OCT is non-invasive retinal imaging modality that provides cross-sectional data of retina. Due to differences in contrast, resolution and brightness of multimodal retinal images, the images resulted from vessel extraction of image pairs are not exactly the same. Also, prevalent feature detection, extraction and matching schemes do not result in perfect matches. In addition, the relationships between retinal image pairs are usually modeled by affine transformation, which cannot generate accurate alignments due to the non-planar retina surface. In this paper, a precise registration scheme is proposed to align FA and OCT images via scanning laser ophthalmoscopy (SLO) photographs as intermediate images. For this purpose, first a retinal vessel segmentation is applied to extract main blood vessels from the FA and SLO images. Next, a novel global registration is proposed based on the Gaussian model for curved surface of retina. For doing so, first a global rigid transformation is applied to FA vessel-map image using a new feature-based method to align it with SLO vessel-map photograph, in a way that outlier matched features resulted from not-perfect vessel segmentation are completely eliminated. After that, the transformed image is globally registered again considering Gaussian model for curved surface of retina to improve the precision of the previous step. Eventually a local non-rigid transformation is exploited to register two images perfectly. The experimental results indicate the presented scheme is more precise compared to other registration methods.
Diabetic retinopathy (DR) caused by diabetes occurs as a result of changes in the retinal vessels and causes visual impairment. Microaneurysms (MAs) are the early clinical signs of DR, whose timely diagnosis can help detecting DR in the early stages of its development. It has been observed that MAs are more common in the inner retinal layers compared to the outer retinal layers in eyes suffering from DR. Optical coherence tomography (OCT) is a noninvasive imaging technique that provides a cross-sectional view of the retina, and it has been used in recent years to diagnose many eye diseases. As a result, this paper attempts to identify areas with MA from normal areas of the retina using OCT images. This work is done using the dataset collected from FA and OCT images of 20 patients with DR. In this regard, firstly fluorescein angiography (FA) and OCT images were registered. Then, the MA and normal areas were separated, and the features of each of these areas were extracted using the Bag of Features (BOF) approach with the Speeded-Up Robust Feature (SURF) descriptor. Finally, the classification process was performed using a multilayer perceptron network. For each of the criteria of accuracy, sensitivity, specificity, and precision, the obtained results were 96.33%, 97.33%, 95.4%, and 95.28%, respectively. Utilizing OCT images to detect MAs automatically is a new idea, and the results obtained as preliminary research in this field are promising.
Microaneurysms (MAs) are pathognomonic signs that help clinicians to detect diabetic retinopathy (DR) in the early stages. Automatic detection of MA in retinal images is an active area of research due to its application in screening processes for DR which is one of the main reasons of blindness amongst the working-age population. The focus of these works is on the automatic detection of MAs in en face retinal images like fundus color and Fluorescein Angiography (FA). On the other hand, detection of MAs from Optical Coherence Tomography (OCT) images has 2 main advantages: first, OCT is a non-invasive imaging technique that does not require injection, therefore is safer. Secondly, because of the proven application of OCT in detection of Age-Related Macular Degeneration, Diabetic Macular Edema, and normal cases, thanks to detecting MAs in OCT, extensive information is obtained by using this imaging technique. In this research, the concentration is on the diagnosis of MAs using deep learning in the OCT images which represent in-depth structure of retinal layers. To this end, OCT B-scans should be divided into strips and MA patterns should be searched in the resulted strips. Since we need a dataset comprising OCT image strips with suitable labels and such large labelled datasets are not yet available, we have created it. For this purpose, an exact registration method is utilized to align OCT images with FA photographs. Then, with the help of corresponding FA images, OCT image strips are created from OCT B-scans in four labels, namely MA, normal, abnormal, and vessel. Once the dataset of image strips is prepared, a stacked generalization (stacking) ensemble of four fine-tuned, pre-trained convolutional neural networks is trained to classify the strips of OCT images into the mentioned classes. FA images are used once to create OCT strips for training process and they are no longer needed for subsequent steps. Once the stacking ensemble model is obtained, it will be used to classify the OCT strips in the test process. The results demonstrate that the proposed framework classifies overall OCT image strips and OCT strips containing MAs with accuracy scores of 0.982 and 0.987, respectively.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.