Skeletal muscle tissue engineering (SMTE) aims at repairing defective skeletal muscles. Until now, numerous developments are made in SMTE; however, it is still challenging to recapitulate the complexity of muscles with current methods of fabrication. Here, after a brief description of the anatomy of skeletal muscle and a short state‐of‐the‐art on developments made in SMTE with “conventional methods,” the use of 3D bioprinting as a new tool for SMTE is in focus. The current bioprinting methods are discussed, and an overview of the bioink formulations and properties used in 3D bioprinting is provided. Finally, different advances made in SMTE by 3D bioprinting are highlighted, and future needs and a short perspective are provided.
Hydrogels are hydrophilic polymer networks with high water content, which have played an important role as scaffolds for cells, as carriers for various biomolecules (e.g., drugs, genes, and soluble factors), and as injectable biomaterials in tissue engineering (TE) and regenerative medicine. Bioconjugation is an approach for improving the performance of hydrogels using cell-responsive components, such as proteins and peptides, which have high affinity to regulate cellular behaviors and tissue morphogenesis. However, the current knowledge on the role of those bioconjugated moieties in controlling cellular functions and tissue morphogenesis and bioconjugation methods are limited in the context of TE and organogenesis. Moreover, micro- and nanofabrication techniques have been used to manipulate bioconjugated hydrogels for regulating cell behaviors and function. This Review therefore describes synthesis, characteristics, and manipulation of various bioconjugated hydrogels and their potential in TE applications with special emphasis on preclinical/clinical translation.
Several hundred million volts per centimetre of electric-field strength are required to field-ionize gas species. Such fields are produced on sharp metallic tips under a bias of a few kilovolts. Here, we show that field ionization is possible at dramatically lower fields on semiconductor nanomaterials containing surface states, particularly with metal-catalysed whiskers grown on silicon nanowires. The low-voltage field-ionization phenomena observed here cannot be explained solely on the basis of the large field-amplification effect of suspended gold nanoparticles present on the whisker tips. We postulate that field penetration causes upward band-bending at the surface of exposed silicon containing surface states in the vicinity of the catalyst. Band-bending enables the valence electron to tunnel into the surface states at reduced fields. This work provides a basis for development of low-voltage ionization sensors. Although demonstrated on silicon, low-voltage field ionization can be detected on any sharp semiconductor tip containing proper surface states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.