We describe a new temperature and electric field dual-stimulus responsive nanoparticle system for programmed drug delivery. Nanoparticles of a conducting polymer (polypyrrole) are loaded with therapeutic pharmaceuticals and are subcutaneously localized in vivo with the assistance of a temperature-sensitive hydrogel (PLGA-PEG-PLGA). We have shown that drug release from the conductive nanoparticles is controlled by the application of a weak, external DC electric field. This approach represents a novel interactive drug delivery system that can show an externally tailored release profile with an excellent spatial, temporal, and dosage control.
The ability to implant electronic systems in the human body has led to many medical advances. Progress in semiconductor technology paved the way for devices at the scale of a millimeter or less ("microimplants"), but the miniaturization of the power source remains challenging. Although wireless powering has been demonstrated, energy transfer beyond superficial depths in tissue has so far been limited by large coils (at least a centimeter in diameter) unsuitable for a microimplant. Here, we show that this limitation can be overcome by a method, termed midfield powering, to create a high-energy density region deep in tissue inside of which the power-harvesting structure can be made extremely small. Unlike conventional near-field (inductively coupled) coils, for which coupling is limited by exponential field decay, a patterned metal plate is used to induce spatially confined and adaptive energy transport through propagating modes in tissue. We use this method to power a microimplant (2 mm, 70 mg) capable of closed-chest wireless control of the heart that is orders of magnitude smaller than conventional pacemakers. With exposure levels below human safety thresholds, milliwatt levels of power can be transferred to a deep-tissue (>5 cm) microimplant for both complex electronic function and physiological stimulation. The approach developed here should enable new generations of implantable systems that can be integrated into the body at minimal cost and risk.biomedical electronics | microstimulator P rogress in semiconductor technology has led to electronic devices that can augment or replace physiological functions; their ability to be implanted for direct interaction with organ systems relies on overall miniaturization of the device for simplified delivery (e.g., via catheter or hypodermic needle) and access to interstitial spaces. Advances over the past few decades enable most components in a biomedical device, including electrodes, oscillators, memory, and wireless communication systems, to be integrated on tiny silicon chips. However, the energy required for electronic function remains substantial and the consumption density has not been matched by existing powering technologies (1). As a result, the vast bulk of most implantable electronic devices consists of energy storage or harvesting components.Although considerable progress has been made in energy storage technologies, batteries remain a major obstacle to miniaturization (2, 3) because their lifetimes are limited and highly constrained by the available volume, requiring periodic surgical replacement once the unit is depleted. Energy-harvesting strategies have been developed to eliminate batteries or to extend their function. Previous demonstrations include thermoelectric (4), piezoelectric (5-7), biopotential (8), or glucose (9, 10) power extraction. However, these methods are anatomically specific and, in their existing forms, yield power densities too low (<0.1 μW/mm 2 ) for a microimplant. Alternatively, energy can be transferred from an external source. I...
Electrospinning using natural proteins or synthetic polymers is a promising technique for the fabrication of fibrous scaffolds for various tissue engineering applications. However, one limitation of scaffolds electrospun from natural proteins is the need to cross-link with glutaraldehyde for stability, which has been postulated to lead to many complications in vivo including graft failure. In this study, we determined the characteristics of hybrid scaffolds composed of natural proteins including collagen and elastin, as well as gelatin, and the synthetic polymer poly(ε-caprolactone) (PCL), so to avoid chemical cross-linking. Fiber size increased proportionally with increasing protein and polymer concentrations, whereas pore size decreased. Electrospun gelatin/PCL scaffolds showed a higher tensile strength when compared to collagen/elastin/PCL constructs. To determine the effects of pore size on cell attachment and migration, both hybrid scaffolds were seeded with adipose-derived stem cells. Scanning electron microscopy and nuclei staining of cell-seeded scaffolds demonstrated complete cell attachment to the surfaces of both hybrid scaffolds, although cell migration into the scaffold was predominantly seen in the gelatin/PCL hybrid. The combination of natural proteins and synthetic polymers to create electrospun fibrous structures resulted in scaffolds with favorable mechanical and biological properties.
Background Drug-induced arrhythmia is the most common cause of drug development failure and withdrawal from market. This study tested whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) combined with a low-impedance microelectrode array (MEA) system could improve upon industry-standard, preclinical cardiotoxicity screening methods, identify the effects of well-characterized drugs, and elucidate underlying risk factors for drug-induced arrhythmia. Human iPSC-CMs may be advantageous over immortalized cell lines because they possess similar functional characteristics as primary human cardiomyocytes and can be generated in unlimited quantities. Methods and Results Pharmacological responses of beating embryoid bodies (EBs) exposed to a comprehensive panel of drugs at 65 to 95 days post-induction were determined. Responses of hiPSC-CMs to drugs were qualitatively and quantitatively consistent with the reported drug effects in literature. Torsadogenic hERG blockers such as sotalol and quinidine produced statistically and physiologically significant effects, consistent with patch-clamp studies on human embryonic stem cell-derived cardiomyocytes (hESC-CMs). False negative and false positive hERG blockers were identified accurately. Consistent with published studies using animal models, early afterdepolarizations (EADs) and ectopic beats were observed in 33% and 40% of embryoid bodies treated with sotalol and quinidine, respectively, compared to negligible EADs and ectopic beats in untreated controls. Conclusions We found that drug-induced arrhythmias can be recapitulated in hiPSC-CMs and documented with MEA. Our data indicate that the MEA/hiPSC-CM assay is a sensitive, robust, and efficient platform for testing drug effectiveness and for arrhythmia screening. We believe that this system holds great potential for reducing drug development costs and may provide significant advantages over current industry standard assays that use immortalized cell lines or animal models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.