Edge-based distributed intelligence techniques, such as federated learning (FL), have recently been used in many research fields thanks, in part, to their decentralized model training process and privacy-preserving features. However, because of the absence of effective deployment models for the radio access network (RAN), only a tiny number of FL apps have been created for the latest generation of public mobile networks (e.g., 5G and 6G). There is an attempt, in new RAN paradigms, to move toward disaggregation, hierarchical, and distributed network function processing designs. Open RAN (O-RAN), as a cutting-edge RAN technology, claims to meet 5G services with high quality. It includes integrated, intelligent controllers to provide RAN with the power to make smart decisions. This paper proposes a methodology for deploying and optimizing FL tasks in O-RAN to deliver distributed intelligence for 5G applications. To accomplish model training in each round, we first present reinforcement learning (RL) for client selection for each FL task and resource allocation using RAN intelligence controllers (RIC). Then, a slice is allotted for training depending on the clients chosen for the task. Our simulation results show that the proposed method outperforms state-of-art FL methods, such as the federated averaging algorithm (FedAvg), in terms of convergence and number of communication rounds.
The Internet of Things(IoT) will revolutionize the Future Internet through ubiquitous sensing. One of the challenges of having the hundreds of billions of devices that are estimated to be deployed would be rise of an enormous amount of data, along with the devices ability to manage. This paper presents an approach as a controller solution and designed specifically for autonomous management, connectivity and data interoperability in an IoT gateway. The approach supports distributed IoT nodes with both management and data interoperability with other cloud-based solutions. The concept further allows gateways to easily collect and process interoperability of data from IoT devices. We demonstrated the feasibility of the approach and evaluate its advantages regarding deep sensing and autonomous enabled gateway as an edge computational intelligence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.