Free-radical photopolymerization performed within PDMS microfluidic devices is now used for a variety of applications. We propose, through model and experiment, that atmospheric oxygen diffusing in through the porous PDMS is responsible for the presence, under UV light, of a thin, un-cross-linked film of oligomer abutting the walls of an all-PDMS device. After the advent of light exposure, an induction time τ i is required before the oxygen present in the oligomer is depleted, and cross-linking reactions can begin. A polymerized structure then grows from the center of the device outward, increasing sharply in height with time and leaving only a thin un-cross-linked film of thickness, δ i,c , close to the walls where oxygen can penetrate. Under suitable simplification of the reaction-diffusion model developed, scaling relationships were obtained for τ i (∼Da-1) and δ i,c (∼Da-1/2) as a function of a Damköhler number, Da. The relationships were successfully verified by comparison with both the full solution and experimental data. The analysis shows that control over particle height can be obtained more easily by changing initiator concentration, irradiation intensity, or channel height rather than exposure time.
In this study, we report the microfluidic-based synthesis of a multifunctional Janus hydrogel particle with anisotropic superparamagnetic properties and chemical composition for the bottom-up assembly of hydrogel superstructures. In a uniform magnetic field, the resulting Janus magnetic particles fabricated in the present method exhibit chainlike or meshlike superstructure forms, the complexity of which can be simply modulated by particle density and composition. This controllable field-driven assembly of the particles can be potentially used as building blocks to construct targeted superstructures for tissue engineering. More importantly, we demonstrated that this method also shows the ability to generate multifunctional Janus particles with great design flexibilities: (a) direct encapsulation and precise spatial distribution of biological substance and (b) selective surface functionalization in a particle. Although these monodisperse particles find immediate use in tissue engineering, their ability to self-assemble with tunable anisotropic configurations makes them an intriguing material for several exciting areas of research such as photonic crystals, novel microelectronic architecture, and sensing.
Recent advances in the synthesis of polymeric colloids have opened the doors to new advanced materials. There is strong interest in using these new techniques to produce particles that mimic and/or interact with biological systems. An important characteristic of biological systems that has not yet been exploited in synthetic polymeric colloids is their wide range of deformability. A canonical example of this is the human red blood cell (RBC) which exhibits extreme reversible deformability under flow. Here we report the synthesis of soft polymeric colloids with sizes and shapes that mimic those of the RBC. Additionally, we demonstrate that the mechanical flexibility of the colloids can be reproducibly varied over a large range resulting in RBC-like deformability under physiological flow conditions. These materials have the potential to impact the interaction between biological and synthetic systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.