A number of regional gravimetric geoid models have recently been determined for the Iran area, and a common problem is to select the best model, e.g. for engineering applications. A related problem is that in order to improve the local geoid models, the selection of the best Global Geopotential Model (GGM) model for the region is essential, to be used in a combined solution from GGM and local gravimetric data. We discuss these problems by taking advantage of 260 GPS/levelling points as an external tool for validation of different global and local geoid models in the absolute and relative senses. By using relative comparisons of the height differences between precise levelling and GPS/geoid models we avoid possible unknown systematic effects between the different types of observables.The study shows that the combination of the newly released GRACE model (GGM02C) with EGM96 geoid model fits the GPS/levelling data in Iran with the best absolute and relative accuracy among the GGMs. Among the local geoid models, the newly gravimetric geoid model IRG04 agrees considerably better with GPS/levelling than any of the other recent local geoid models. Its rms fit with GPS/levelling is 55 cm. Hence, we strongly recommend the use of this new model in any surveying engineering or GPS/levelling projects in the area.
The least squares modification of Stokes formula has been developed in a series of papers published in Journal of Geodesy between 1984 and 2008. It consists of a least squares (stochastic) Stokes kernel modification with additive corrections for the topography, downward continuation, the atmosphere and the ellipsoidal shape of the Earth. The method, developed at the Royal Institute of Technology (KTH) will here be denoted by the abbreviated name the KTH method. This paper presents the computational results of a new gravimetric quasigeoid model over Sweden (the KTH08 model) by employing the KTH method. Traditionally the Nordic Geodetic Commission (NKG) has computed gravimetric quasigeoid models over Sweden and other Nordic countries; the latest model being NKG 2004. Another aim of this paper is therefore to compare KTH08 and NKG 2004 quasigeoid models and to evaluate their accuracies using GNSS/levelling height anomalies. The rms fit of KTH08 in 196 GNSS data points distributed over Sweden by using a 1(4)-parameter transformation is 22 (20) mm. It is concluded that KTH08 is a significant step forward compared to NKG 2004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.