The topological indices are functions on the graph that do not depend on the labeling of their vertices. They are used by chemists for studying the properties of chemical compounds. Let be a simple connected graph. The Hyper-Zagreb index of the graph , is defined as ,where and are the degrees of vertex and , respectively. In this paper, we study the Hyper-Zagreb index and give upper and lower bounds for .
For a simple graph G on n vertices, the signless Laplacian Estrada index is defined as SLEE(G) = n i=1 e q i , where q 1 , q 2 , . . . , q n are the eigenvalues of the signless Laplacian matrix of G. In this paper, the unique graph on n vertices with maximum signless Laplacian Estrada index is determined among graphs with given number of cut edges, pendent vertices, (vertex) connectivity and edge connectivity, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.